Skip to main content
Log in

Spectral Properties of Zero Temperature Dynamics in a Model of a Compacting Granular Column

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The compacting of a column of grains has been studied using a one-dimensional Ising model with long range directed interactions in which down and up spins represent orientations of the grain having or not having an associated void. When the column is not shaken (zero “temperature”) the motion becomes highly constrained and under most circumstances we find that the generator of the stochastic dynamics assumes an unusual form: many eigenvalues become degenerate, but the associated multi-dimensional invariant spaces have but a single eigenvector. There is no spectral expansion and a Jordan form must be used. Many properties of the dynamics are established here analytically; some are not. General issues associated with the Jordan form are also taken up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schulman, L.S.: Unstable particles and the Poincaré semigroup. Ann. Phys. 59, 201–218 (1970)

    Article  ADS  MATH  Google Scholar 

  2. Daems, D.: Non-diagonalizability of the Frobenius-Perron operator and transition between decay modes of the time autocorrelation function. Chaos Solitons Fractals 7, 1753–1760 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. O’Cinneide, C.: On “sluggish transients” in Markov chains. SIAM J. Matrix Anal. Appl. 24, 320–333 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Grassmann, W.K.: Finding equilibrium probabilities of QBD processes by spectral methods when eigenvalues vanish. Linear Algebra Appl. 386, 207–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dhar, D.: Steady state and relaxation spectrum of the Oslo rice-pile model. Physica A 340, 535–543 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  6. Stephen, N.G.: Transfer matrix analysis of the elastostatics of one-dimensional repetitive structures. Proc. R. Soc. Lond. Ser. A 462, 2245–2270 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Sadhu, T., Dhar, D.: Steady state of stochastic sandpile models. J. Stat. Phys. 134, 427–441 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Mehta, A., Barker, G.C., Luck, J.M.: Heterogeneities in granular materials. Phys. Today 62(5), 40–45 (2009)

    Article  ADS  Google Scholar 

  9. Mehta, A., Luck, J.M.: Why shape matters in granular compaction. J. Phys. A 36, L365–L372 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luck, J.M., Mehta, A.: A column of grains in the jamming limit: glassy dynamics in the compaction process. Eur. Phys. J. B 35, 399–411 (2003)

    Article  ADS  Google Scholar 

  11. Luck, J.M., Mehta, A.: Dynamical diversity and metastability in a hindered granular column near jamming. Eur. Phys. J. B 57, 429–451 (2007)

    Article  ADS  Google Scholar 

  12. Luck, J.M., Mehta, A.: The effects of grain shape and frustration in a granular column near jamming. Eur. Phys. J. B 77, 505–521 (2010)

    Article  ADS  Google Scholar 

  13. Mehta, A., Barker, G.C., Luck, J.M.: Heterogeneities in granular dynamics. Proc. Natl. Acad. Sci. 105, 8244–8249 (2008)

    Article  ADS  Google Scholar 

  14. Barker, G.C., Mehta, A.: Vibrated powders: structure, correlations and dynamics. Phys. Rev. A 45, 3435–3446 (1992)

    Article  ADS  Google Scholar 

  15. Berg, J., Mehta, A.: Glassy dynamics in granular compaction: sand on random graphs. Phys. Rev. E 65, 031305 (2002)

    Article  ADS  Google Scholar 

  16. Gaveau, B., Schulman, L.S.: Multiple phases in stochastic dynamics: geometry and probabilities. Phys. Rev. E 73, 036124 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. Schulman, L.S.: Mean field spin glass in the observable representation. Phys. Rev. Lett. 98, 257202 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. Gaveau, B., Schulman, L.S., Schulman, L.J.: Imaging geometry through dynamics: the observable representation. J. Phys. A 39, 10307–10321 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Schulman, L.S., Bagrow, J.P., Gaveau, B.: Visualizing relations using the “observable representation”. Adv. Complex Syst. 14, 829–851 (2011)

    Article  Google Scholar 

  20. Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294–307 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Bedeaux, D., Shuler, K.E., Oppenheim, I.: Decay of correlations. III. Relaxation of spin correlations and distribution functions in the one-dimensional Ising lattice. J. Stat. Phys. 2, 1–19 (1970)

    Article  ADS  Google Scholar 

  22. Felderhof, B.U.: Spin relaxation of the Ising chain. Rep. Math. Phys. 1, 215–234 (1970)

    Article  ADS  Google Scholar 

  23. Aliev, M.A.: Exact solution for the generating function of correlators of the kinetic Glauber-Ising model. Phys. Lett. A 241, 19–27 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Mayer, P., Sollich, P.: General solutions for multispin two-time correlation and response functions in the Glauber-Ising chain. J. Phys. A 37, 9–50 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science 2nd edn. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  26. Derrida, B., Lebowitz, J.L.: Exact large deviation function in the asymmetric exclusion process. Phys. Rev. Lett. 80, 209–213 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Derrida, B., Appert, C.: Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension. J. Stat. Phys. 94, 1–30 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Bauer, M., Godrèche, C., Luck, J.M.: Statistics of persistent events in the binomial random walk: will the drunken sailor hit the sober man? J. Stat. Phys. 96, 963–1019 (1999)

    Article  ADS  MATH  Google Scholar 

  29. Garrahan, J.P., Sollich, P.S., Toninelli, C.: Kinetically constrained models. In: Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L., van Saarloos, W. (eds.) Dynamical Heterogeneities in Glasses, Colloids, and Granular Media Oxford Univ. Press, Oxford (2012)

    Google Scholar 

  30. Ritort, F., Sollich, P.: Glassy dynamics of kinetically constrained models. Adv. Phys. 52, 219–342 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Schulman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulman, L.S., Luck, J.M. & Mehta, A. Spectral Properties of Zero Temperature Dynamics in a Model of a Compacting Granular Column. J Stat Phys 146, 924–954 (2012). https://doi.org/10.1007/s10955-012-0429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0429-6

Keywords

Navigation