Skip to main content

Advertisement

Log in

A Review of Monte Carlo Simulations of Polymers with PERM

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this review, we describe applications of the pruned-enriched Rosenbluth method (PERM), a sequential Monte Carlo algorithm with resampling, to various problems in polymer physics. PERM produces samples according to any given prescribed weight distribution, by growing configurations step by step with controlled bias, and correcting “bad” configurations by “population control”. The latter is implemented, in contrast to other population based algorithms like e.g. genetic algorithms, by depth-first recursion which avoids storing all members of the population at the same time in computer memory. The problems we discuss all concern single polymers (with one exception), but under various conditions: Homopolymers in good solvents and at the Θ point, semi-stiff polymers, polymers in confining geometries, stretched polymers undergoing a forced globule-linear transition, star polymers, bottle brushes, lattice animals as a model for randomly branched polymers, DNA melting, and finally—as the only system at low temperatures, lattice heteropolymers as simple models for protein folding. PERM is for some of these problems the method of choice, but it can also fail. We discuss how to recognize when a result is reliable, and we discuss also some types of bias that can be crucial in guiding the growth into the right directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  2. Lifshitz, I.M.: Sov. Phys. JETP 28, 1280 (1968)

    ADS  Google Scholar 

  3. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1969)

    Google Scholar 

  4. Grosberg, A.Yu., Kuznetsov, D.V.: Quantitative theory of the globule-to-coil transition. 1. Link density distribution in a globule and its radius of gyration. Macromolecules 25, 1970–1979 (1992)

    Article  ADS  Google Scholar 

  5. Roiter, Y., Minko, S.: AFM single molecule experiments at the solid-liquid interface: in situ conformation of adsorbed flexible polyelectrolytes chains. J. Am. Chem. Soc. 127, 15688–15689 (2005)

    Article  Google Scholar 

  6. Salman, H., Zbaida, D., Rabin, Y., Chatenay, D., Elbaum, M.: Kinetics and mechanism of DNA uptake into the cell nucleus. Proc. Natl. Acad. Sci. USA 98, 7247–7252 (2001)

    Article  ADS  Google Scholar 

  7. Meller, A.: Dynamics of polynucleotide transport through nanometer-scale pores. J. Phys., Condens. Matter 15, R581–R607 (2003)

    Article  ADS  Google Scholar 

  8. Kasianowicz, J.J., Brandin, E., Branton, D., Deamer, D.W.: Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996)

    Article  ADS  Google Scholar 

  9. Binder, K. (ed.): Monte Carlo and Molecular Dynamics Simulations in Polymer Science. Oxford University Press, New York (1995)

    Google Scholar 

  10. Binder, K., Paul, W.: Recent developments in Monte Carlo simulations of lattice models for polymer systems. Macromolecules 41, 4337–4550 (2008)

    Google Scholar 

  11. Rosenbluth, M.N., Rosenbluth, A.W.: Monte Carlo calculation of the average extension of molecular chains. J. Chem. 23, 356–359 (1955)

    Google Scholar 

  12. Wall, F.T., Erpenbeck, J.J.: New method for the statistical computation of polymer dimensions. J. Chem. Phys. 30, 634–637 (1959)

    Article  ADS  Google Scholar 

  13. Madras, N., Sokal, A.D.: The pivot algorithm: a highly efficient Monte Carlo method for the self-avoiding walk. J. Stat. Phys. 50, 109–186 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Grassberger, P.: Pruned-enriched Rosenbluth method: simulations of θ polymers of chain length up to 1,000,000. Phys. Rev. E 56, 3682–3693 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  15. Anderson, J.B.: A random walk simulation of the Schrödinger equation: \(\mathrm{H}^{+}_{3}\). J. Chem. Phys. 63, 1499–1503 (1975)

    Article  ADS  Google Scholar 

  16. Grassberger, P., Frauenkron, H., Nadler, W.: PERM: a Monte Carlo strategy for simulating polymers and other things. In: Grassberger, P., Barkema, G., Nadler, W. (eds.) Monte Carlo Approach to Biopolymers and Protein Folding, pp. 301–315. World Scientific, Singapore (1998)

    Google Scholar 

  17. Grassberger, P., Nadler, W.: “Go with the winners”-simulations. In: Proceedings of Heraeus Summer School “Vom Billiardtisch bis Monte Carlo: Spielfelder der statistischen Physik”, Chemnitz, October 2000. arXiv:cond-mat/0010265

  18. Grassberger, P.: Go with the winners: a general Monte Carlo strategy. Comput. Phys. Commun. 147, 64–70 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Grassberger, P.: Comment on “Polymer localization in attractive random media”. J. Chem. Phys. 109, 1011 (1998)

    Google Scholar 

  20. Grassberger, P.: Comment on “Polymer localization in attractive random media”. J. Chem. Phys. 111, 440 (1999)

    Article  ADS  Google Scholar 

  21. Donsker, M.D., Varadhan, S.R.S.: Asymptotics for the Wiener Sausage. Commun. Pure Appl. Math. 28, 525–565 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mehra, V., Grassberger, P.: Transition to localization of biased walks in a randomly absorbing environment. Physica D: Nonlinear Phenomena 168–169, 244 (2002)

    Article  Google Scholar 

  23. Frauenkron, H., Causo, M.S., Grassberger, P.: Two-dimensional self-avoiding walks on a cylinder. Phys. Rev. E 59, R16–R19 (1999)

    Article  ADS  Google Scholar 

  24. Hsu, H.-P., Grassberger, P.: 2-Dimensional polymers confined in a strip. Eur. Phys. J. B 36, 209–214 (2003)

    Article  ADS  Google Scholar 

  25. Hsu, H.-P., Grassberger, P.: Polymers confined between two parallel plane walls. J. Chem. Phys. 120, 2034–2041 (2004)

    Article  ADS  Google Scholar 

  26. Duplantier, B.: Geometry of polymer chains near the theta-point and dimensional regularization. J. Chem. Phys. 86, 4233–4244 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  27. Hager, J., Schäfer, L.: Θ-Point behavior of diluted polymer solutions: can one observe the universal logarithmic corrections predicted by field theory? Phys. Rev. E 60, 2071–2085 (1999)

    Article  ADS  Google Scholar 

  28. Boothroyd, A.T., Rennie, A.R., Boothroyd, C.B., Fetters, L.J.: Direct measurement of the three-body interaction parameter in a dilute polymer solution. Phys. Rev. Lett. 69, 426–429 (1992)

    Article  ADS  Google Scholar 

  29. Widom, B.: Phase separation in polymer solutions. Physica A 194, 532–541 (1993)

    Article  ADS  Google Scholar 

  30. Frauenkron, H., Grassberger, P.: Critical unmixing of polymer solutions. J. Chem. Phys. 107, 9599–9608 (1997)

    Article  ADS  Google Scholar 

  31. Duplantier, B.: Lagrangian tricritical theory of polymer chain solutions near the Θ-point. J. Phys. 43, 991–1020 (1982)

    Article  MathSciNet  Google Scholar 

  32. Grassberger, P., Hsu, H.-P.: Stretched polymers in a poor solvent. Phys. Rev. E 65, 031807 (2002)

    Article  ADS  Google Scholar 

  33. Ferrenberg, A.M., Swendsen, R.H.: New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett. 61, 2635–2639 (1988)

    Article  ADS  Google Scholar 

  34. Ferrenberg, A.M., Swendsen, R.H.: Optimized Monte Carlo data analysis. Phys. Rev. Lett. 63, 1195–1198 (1989)

    Article  ADS  Google Scholar 

  35. Prellberg, T., Owczarek, A.L.: Four-dimensional polymer collapse: pseudo-first-order transition in interacting self-avoiding walks. Phys. Rev. E 62, 3780–3789 (2000)

    Article  ADS  Google Scholar 

  36. Prellberg, T., Owczarek, A.L.: First-order scaling near a second-order phase transition: tricritical polymer collapse. Europhys. Lett. 51, 602–607 (2000)

    Article  ADS  Google Scholar 

  37. Prellberg, T., Owczarek, A.L.: Four-dimensional polymer collapse II: interacting self-avoiding trails. Physica A 297, 275–290 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Prellberg, T., Owczarek, A.L.: Pseudo-first-order transition in interacting self-avoiding walks and trails. arXiv:cond-mat/0108390 (2001)

  39. Grassberger, P., Christensen, C., Bizhani, G., Son, S.-W., Paczuski, M.: Explosive percolation is continuous, but with unusual finite size behavior. arXiv:1103.3728 (2011)

  40. Netz, R.R., Andelman, D.: Neutral and charged polymers at interfaces. Phys. Rep. 380, 1–95 (2003)

    Article  ADS  MATH  Google Scholar 

  41. Hsu, H.-P., Paul, W., Binder, K.: Polymer chain stiffness versus excluded volume: a Monte Carlo study of the crossover towards the wormlike chain model. Europhys. Lett. 92, 28003 (2010)

    Article  ADS  Google Scholar 

  42. Bastolla, U., Grassberger, P.: Phase transitions of single semistiff polymer chains. J. Stat. Phys. 89, 1061–1078 (1997)

    Article  ADS  MATH  Google Scholar 

  43. Doniach, S., Garel, T., Orland, H.: Phase diagram of a semiflexible polymer chain in a θ solvent: application to protein folding. J. Chem. Phys. 105, 1601 (1996)

    Article  ADS  Google Scholar 

  44. Li, B., Madras, N., Sokal, A.D.: Critical exponents, hyperscaling, and universal amplitude ratios for two- and three-dimensional self-avoiding walks. J. Stat. Phys. 80, 661–754 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Belohorec, P., Nickel, B.G.: Accurate universal and two-parameter model results from a Monte-Carlo enormalization group study. Guelph University preprint (1997)

  46. Grassberger, P., Sutter, P., Schäfer, L.: Field theoretic and Monte Carlo analysis of the Domb-Joyce model. J. Phys. A 30, 7039–7056 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Domb, C., Joyce, S.: Cluster expansion for a polymer chain. J. Phys. C 5, 956–976 (1972)

    Article  ADS  Google Scholar 

  48. Hsu, H.-P., Nadler, W., Grassberger, P.: Scaling of star polymers with one to 80 arms. Macromolecules 37, 4658–4663 (2004)

    Article  ADS  Google Scholar 

  49. Milchev, A., Binder, K.: A polymer chain trapped between two parallel repulsive walls: a Monte-Carlo test of scaling behavior. Eur. Phys. J. B 3, 477–484 (1988)

    Article  ADS  Google Scholar 

  50. Milchev, A., Binder, K.: Erratum. Phys. J. B 13, 607 (2000)

    ADS  Google Scholar 

  51. Eisenriegler, E.: Random walks in polymer physics. In: Meyer-Ortmanns, H., Klümper, A. (eds.) Field Theoretical Tools in Polymer and Particle Physics. Springer, Heidelberg (1997)

    Google Scholar 

  52. Eisenriegler, E., Kremer, K., Binder, K.: Adsorption of polymer chains at surfaces: scaling and Monte Carlo analyses. J. Chem. Phys. 77, 6296–6320 (1982)

    Article  ADS  Google Scholar 

  53. Eisenriegler, E.: Universal density-force relations for polymers near a repulsive wall. Phys. Rev. E 55, 3116–3123 (1997)

    Article  ADS  Google Scholar 

  54. Hsu, H.-P., Binder, K., Klushin, L.I., Skvortsov, A.M.: What is the order of the two-dimensional polymer escape transition? Phys. Rev. E 76, 021108 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  55. Klushin, L.I., Skvortsov, A.M. Hsu, H.-P., Binder, K.: Dragging a polymer chain into a nanotube and subsequent release. Macromolecules 41, 5890–5898 (2008)

    Article  ADS  Google Scholar 

  56. Hsu, H.-P., Binder, K., Klushin, L.I., Skvortsov, A.M.: Escape transition of a polymer chain from a nanotube: how to avoid spurious results by use of force-biased pruned-enriched Rosenbluth algorithm. Phys. Rev. E 78, 041803 (2008)

    Article  ADS  Google Scholar 

  57. Grassberger, P.: Simulations of grafted polymers in a good solvent. J. Phys. A 38, 323–331 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Hsu, H.-P., Grassberger, P.: Effective interactions between star polymers. Europhys. Lett. 66, 874–880 (2004)

    Article  ADS  Google Scholar 

  59. Duplantier, B.: Polymer network of fixed topology: renormalization, exact critical exponent γ in two dimensions, and d=4−ε. Phys. Rev. Lett. 57, 941–944 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  60. Barrett, A.J., Tremain, D.L.: Lattice walk models of uniform star polymers with many arms. Macromolecules 20, 1687–1692 (1987)

    Article  ADS  Google Scholar 

  61. Batoulis, J., Kremer, K.: Thermodynamic properties of star polymers: good solvents. Macromolecules 22, 4277–4285 (1989)

    Article  ADS  Google Scholar 

  62. Shida, K., Ohno, K., Kimura, M., Kawazoe, Y.: Monte Carlo study of the second virial coefficient and statistical exponent of star polymers with large numbers of branches. Macromolecules 33, 7655–7662 (2000)

    Article  ADS  Google Scholar 

  63. Di Cecca, A., Freire, J.J.: Monte Carlo simulation of star polymer systems with the bond fluctuation model. Macromolecules 35, 2851–2858 (2002)

    Article  ADS  Google Scholar 

  64. Ohno, K.: Scaling theory and computer simulation of star polymers in good solvents. Condens. Matter Phys. 5, 15–36 (2002)

    Google Scholar 

  65. Zifferer, G.: Monte Carlo simulation studies of the size and shape of linear and star-branched polymers embedded in the tetrahedral lattice. Macromol. Theory Simul. 8, 433–462 (1999)

    Article  Google Scholar 

  66. Grest, G.S., Kremer, K., Witten, T.A.: Structure of many-arm star polymers: a molecular dynamics simulation. Macromolecules 20, 1376–1383 (1987)

    Article  ADS  Google Scholar 

  67. Grest, G.S.: Structure of many-arm star polymers in solvents of varying quality: a molecular dynamics study. Macromolecules 27, 3493–3500 (1994)

    Article  ADS  Google Scholar 

  68. Schäfer, L., von Ferber, C., Lehr, U., Duplantier, B.: Renormalization of polymer networks and stars. Nucl. Phys. B 374, 473–495 (1992)

    Article  ADS  MATH  Google Scholar 

  69. Witten, T.A., Pincus, P.A.: Colloid stabilization by long grafted polymers. Macromolecules 19, 2509 (1986)

    Article  ADS  Google Scholar 

  70. Rubio, A.M., Freire, J.J.: Interaction between two star polymers in a good solvent. Comput. Theory Polym. Sci. 10, 89–96 (2000)

    Article  Google Scholar 

  71. Likos, C.N., Löwen, H., Watzlawek, M., Abbas, B., Jucknischke, O., Allgaier, J., Richter, D.: Star polymers viewed as ultrasoft colloidal particles. Phys. Rev. Lett. 80, 4450–4453 (1998)

    Article  ADS  Google Scholar 

  72. Hsu, H.-P., Paul, W., Binder, K.: One- and two-component bottle-brush polymers: simulations compared to theoretical predictions. Macromol. Theory Simul. 16, 660–689 (2007)

    Article  Google Scholar 

  73. Hsu, H.-P., Paul, W., Binder, K.: Intramolecular phase separation of copolymer “bottle brushes”: no sharp phase transition but a tunable length scale. Europhys. Lett. 76, 526–532 (2006)

    Article  ADS  Google Scholar 

  74. Hsu, H.-P., Paul, W., Binder, K.: Structure of bottle-brush polymers in solutions: a Monte Carlo test of models for the scattering function. J. Chem. Phys. 129, 204904 (2008)

    Article  ADS  Google Scholar 

  75. Hsu, H.-P., Paul, W., Binder, K.: Standard definitions of persistence length do not describe the local “intrinsic” stiffness of real polymer chains. Macromolecules 43, 3094 (2010)

    Article  ADS  Google Scholar 

  76. Daoud, M., Cotton, J.P.: Star shaped polymers: a model for the conformation and its concentration dependence. J. Phys. (Paris) 43, 531 (1982)

    Google Scholar 

  77. Wang, Z., Safran, S.A.: Size distribution for aggregates of associating polymers. II. Linear packing. J. Chem. Phys. 89, 5323–5328 (1988)

    Article  ADS  Google Scholar 

  78. Ligoure, C., Leibler, L.: Decoration of rough surfaces by chain grafting. Macromolecules 23, 5044–5046 (1990)

    Article  ADS  Google Scholar 

  79. Sevick, E.M.: Shear swelling of polymer brushes grafted onto convex and concave surfaces. Macromolecules 29, 6952–6958 (1996)

    Article  ADS  Google Scholar 

  80. Grest, G.S., Murat, M.: In: Binder, K. (eds.) Monte Carlo and Molecular Dynamics Simulations in Polymer Science, p. 476. Oxford University Press, New York (1995)

    Google Scholar 

  81. Leath, P.L.: Cluster size and boundary distribution near percolation threshold. Phys. Rev. B 14, 5046–5055 (1976)

    Article  ADS  Google Scholar 

  82. Swendsen, R.H., Wang, J.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88 (1987)

    Article  ADS  Google Scholar 

  83. Hsu, H.-P., Nadler, W., Grassberger, P.: Simulations of lattice animals and trees. J. Phys. A, Math. Gen. 38, 775–806 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. Janse van Rensburg, E.J., Madras, N.: Metropolis Monte Carlo simulation of lattice animals. J. Phys. A, Math. Gen. 30, 8035–8066 (1997)

    Article  ADS  MATH  Google Scholar 

  85. Lubensky, T.C., Isaacson, J.: Field theory for the statistics of branched polymers, gelation, and vulcanization. Phys. Rev. Lett. 41, 829–832 (1978)

    Article  ADS  Google Scholar 

  86. Lubensky, T.C., Isaacson, J.: Errata: Field theory for the statistics of branched polymers. Phys. Rev. Lett. 42, 410 (1979)

    Article  ADS  Google Scholar 

  87. Lubensky, T.C., Isaacson, J.: Statistics of lattice animals and dilute branched polymers. Phys. Rev. A 20, 2130–2146 (1979)

    Article  ADS  Google Scholar 

  88. Adler, J., Meir, Y., Harris, A.B., Aharony, A.: Series study of random animals in general dimensions. Phys. Rev. B 38, 4941–4954 (1988)

    Article  ADS  Google Scholar 

  89. Jensen, I.: Counting polyominoes: a parallel implementation for cluster counting. In: Sloot, P.M.A., et al. (eds.) ICCS 2003, pp. 203–312. Springer, Berlin (2003)

    Chapter  Google Scholar 

  90. You, S., Janse van Rensburg, E.J.: Adsorbing trees in two dimensions: a Monte Carlo study. Phys. Rev. E 64, 046101 (2001)

    Article  ADS  Google Scholar 

  91. Parisi, G., Sourlas, N.: Critical behavior of branched polymers and the Lee-Yang edge singularity. Phys. Rev. Lett. 46, 871–874 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  92. Janssen, H.K., Lyssy, A.: Adsorption-transition of branched polymers at surfaces: superuniversality of the crossover exponent. Europhys. Lett. 29, 25 (1995)

    Article  ADS  Google Scholar 

  93. Miller, J.D., De’Bell, K.: Randomly branched polymers and conformal invariance. J. Phys. I 3, 1717 (1993)

    Article  Google Scholar 

  94. Hsu, H.-P., Nadler, W., Grassberger, P.: Violating conformal invariance: two-dimensional clusters grafted to wedges, cones, and branch points of Riemann surfaces. Phys. Rev. E 71, 065104-R (4 pages) (2005)

    Article  ADS  Google Scholar 

  95. Lummer, O., Pringsheim, E.: Verhandl. Deutsch. Phys. Ges. 2, 163 (1900)

    Google Scholar 

  96. Flesia, S., Gaunt, D.S., Soteros, C.E., Whittington, S.G.: General model for collapse in lattice animals. J. Phys. A, Math. Gen. 25, L1169 (1992)

    Article  ADS  Google Scholar 

  97. Hsu, H.-P., Grassberger, P.: Collapsing lattice animals and lattice trees in two dimensions. J. Stat. Mech., p06003 (2005)

  98. Derrida, B., Herrmann, H.J.: Collapse of branched polymers. J. Phys. 44, 1365–1376 (1983)

    Article  MathSciNet  Google Scholar 

  99. Janssen, H.-K., Stenull, O.: The collapse transition of randomly branched polymers—renormalized field theory. arXiv:1102.3439 (2011)

  100. Hsu, H.-P., Mehra, V., Nadler, W., Grassberger, P.: Growth algorithms for lattice heteropolymers at low temperatures. J. Chem. Phys. 118, 444–451 (2003)

    Article  ADS  Google Scholar 

  101. Hsu, H.-P., Mehra, V., Nadler, W., Grassberger, P.: Growth-based optimization algorithm for lattice heteropolymers. Phys. Rev. E 68, 021113 (2003)

    Article  ADS  Google Scholar 

  102. Hsu, H.-P., Mehra, V., Grassberger, P.: Structure optimization in an off-lattice protein model. Phys. Rev. E 68, 037703 (2003)

    Article  ADS  Google Scholar 

  103. Stillinger, F.H., Head-Gordon, T., Hirshfeld, C.L.: Toy model for protein folding. Phys. Rev. E 48, 1469–1477 (1993)

    Article  ADS  Google Scholar 

  104. Stillinger, F.H., Head-Gordon, T.: Collective aspects of protein folding illustrated by a toy model. Phys. Rev. E 52, 2872–2877 (1995)

    Article  ADS  Google Scholar 

  105. Bachmann, M., Arkin, H., Janke, W.: Multicanonical study of coarse-grained off-lattice models for folding heteropolymers. Phys. Rev. E 71, 031906 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  106. Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24, 1501–1509 (1985)

    Article  Google Scholar 

  107. Beutler, T.C., Dill, K.A.: A fast conformational search strategy for finding low energy structures of model proteins. Protein Sci. 5, 2037–2043 (1996)

    Article  Google Scholar 

  108. Yue, K., Fiebig, K.M., Thomas, P.D., Chan, H.S., Shakhnovich, E.I., Dill, K.A.: A test of lattice protein folding algorithms. Proc. Natl. Acad. Sci. USA 92, 325 (1995)

    Article  ADS  Google Scholar 

  109. Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Mol. Biol. 231, 75–81 (1993)

    Article  Google Scholar 

  110. Bastolla, U., Frauenkron, H., Gerstner, E., Grassberger, P., Nadler, W.: Testing a new Monte Carlo algorithm for protein folding. Proteins 32, 52–66 (1998)

    Article  Google Scholar 

  111. Irbäck, A.: In: Grassberger, P., et al. (eds.) Monte Carlo Approach to Biopolymers and Protein Folding, pp. 98–109. World Scientific, Singapore (1998),

    Google Scholar 

  112. Chikenji, G., Kikuchi, M., Iba, Y.: Multi-self-overlap ensemble for protein folding: ground state search and thermodynamics. Phys. Rev. Lett. 83, 1886–1889 (1999)

    Article  ADS  Google Scholar 

  113. Chikenju, G., Kikuchi, M.: What is the role of non-native intermediates of β-lactoglobulin in protein folding? Proc. Natl. Acad. Sci. USA 97, 14273–14277 (2000)

    Article  ADS  Google Scholar 

  114. Wartell, R.M., Benight, A.S.: Thermal denaturation of DNA molecules: a comparison of theory with experiment. Phys. Rep. 126, 67–107 (1985)

    Article  ADS  Google Scholar 

  115. Reed, G.H., Kent, J.O., Wittwer, C.T.: High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8, 597–608 (2007)

    Article  Google Scholar 

  116. Poland, D., Scheraga, H.A.: Phase transitions in one dimension and the helix-coil transition in polyamino acids. J. Chem. Phys. 45, 1456–1463 (1966)

    Article  ADS  Google Scholar 

  117. Poland, D., Scheraga, H.A.: Occurrence of a phase transition in nucleic acid models. J. Chem. Phys. 45, 1464–1469 (1966)

    Article  ADS  Google Scholar 

  118. Causo, M.S., Coluzzi, B., Grassberger, P.: Simple model for the DNA denaturation transition. Phys. Rev. E 62, 3958–3973 (2000)

    Article  ADS  Google Scholar 

  119. Richard, C., Guttmann, A.J.: Poland-Scheraga models and the DNA denaturation transition. J. Stat. Phys. 115, 925–947 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  120. Mehra, V., Grassberger, P.: Trapping reaction with mobile traps. Phys. Rev. E 65, 050101(R) (2002)

    Article  ADS  Google Scholar 

  121. Hsu, H.-P., Grassberger, P.: Polymers grafted to porous membranes. Europhys. Lett. 77, 18003 (4 pages) (2007)

    Article  ADS  Google Scholar 

  122. Bhattacharya, S., Hsu, H.-P., Milchev, A., Rostiashvili, V.G., Vilgis, T.A.: Adsorption of multi-block and random copolymers on a solid surface: critical behavior and phase diagram. Macromolecules 41, 2920–2030 (2008)

    Article  ADS  Google Scholar 

  123. Caracciolo, S., Causo, M.S., Grassberger, P., Pelissetto, A.: Determination of the exponent γ for SAWs on the two-dimensional Manhattan lattice. J. Phys. A, Math. Gen. 32, 2931–2948 (1999)

    Article  ADS  MATH  Google Scholar 

  124. Barkema, G.T., Bastolla, U., Grassberger, P.: Two-dimensional oriented self-avoiding walks with parallel contacts. J. Stat. Phys. 90, 1311–1324 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  125. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2008)

    MATH  Google Scholar 

  126. Prellberg, T., Krawczyk, J.: Flat histogram version of the pruned and enriched Rosenbluth method. Phys. Rev. Lett. 92, 120602 (2004)

    Article  ADS  Google Scholar 

  127. Bachmann, M., Janke, W.: Multicanonical chain-growth algorithm. Phys. Rev. Lett. 91, 208105 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiao-Ping Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, HP., Grassberger, P. A Review of Monte Carlo Simulations of Polymers with PERM. J Stat Phys 144, 597–637 (2011). https://doi.org/10.1007/s10955-011-0268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0268-x

Keywords

Navigation