Skip to main content
Log in

Insights into Associating Fluid Properties and Microstructure from Classical Density Functional Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Self-assembly, important in industrial and biological processes, is governed not only by molecular size and shape, but also by hydrogen bonding forces and hydrophobicities, both of which have important temperature-dependent consequences. Recent advances in statistical mechanics enable the study of these processes at the molecular level. We discuss one such approach based on classical density functional theory. The theory, based on extensions and simplifications of Wertheim’s theory for associating molecules, is applicable to study the behavior of water at hydrophobic and hydrophilic surfaces and supramolecular assembly based on intermolecular association of polyatomic molecules. Insights into the theory and into the physics of associating molecules are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wertheim, M.S.: Fluids with highly directional attractive forces: 1. Statistical thermodynamics. J. Stat. Phys. 35(1–2), 19–34 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Wertheim, M.S.: Fluids with highly directional attractive forces: 2. Thermodynamic perturbation theory and integral equations. J. Stat. Phys. 35(1–2), 35–47 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Wertheim, M.S.: Fluids with highly directional attractive forces: 3. Multiple attraction sites. J. Stat. Phys. 42(3–4), 459–476 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  4. Wertheim, M.S.: Fluids with highly directional attractive forces: 4. Equilibrium polymerization. J. Stat. Phys. 42(3–4), 477–492 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  5. Gray, C.G., Gubbins, K.E.: Theory of Molecular Fluids. Oxford University Press, Oxford (1985)

    Google Scholar 

  6. Boltzmann, L.: Lectures on Gas Theory Part II (translated by Bruch, S.G.). University of California Press, Berkeley (1964). Barth, Leipzig (1898) Chap. 6

    Google Scholar 

  7. Stell, G.: Model fluids of associating particles. Condens. Matter Phys. 2, 4–20 (1993)

    Google Scholar 

  8. Weeks, J.D., Chandler, D., Andersen, H.C.: Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54(12), 5237–5247 (1971)

    Article  ADS  Google Scholar 

  9. Bol, W.: Monte-Carlo simulations of fluid systems of waterlike molecules. Mol. Phys. 45, 605 (1982)

    Article  ADS  Google Scholar 

  10. Chapman, W.G.: Chemical engineering. Ph.D. thesis, Cornell University, Ithaca, NY (1988)

  11. Chapman, W.G., Jackson, G., Gubbins, K.E.: Phase equilibria of associating fluids: chain molecules with multiple bonding sites. Mol. Phys. 65(5), 1057–1079 (1988)

    Article  ADS  Google Scholar 

  12. Jackson, G., Chapman, W.G., Gubbins, K.E.: Phase-equilibria of associating fluids—spherical molecules with multiple bonding sites. Mol. Phys. 65(1), 1–31 (1988)

    Article  ADS  Google Scholar 

  13. Ghonasgi, D., Chapman, W.G.: Competition between intermolecular and intramolecular association in flexible hard chain molecules. J. Chem. Phys. 102(6), 2585–2592 (1995)

    Article  ADS  Google Scholar 

  14. Ghonasgi, D., Perez, V., Chapman, W.G.: Intramolecular association in flexible hard chain molecules. J. Chem. Phys. 101(8), 6880–6887 (1994)

    Article  ADS  Google Scholar 

  15. Busch, N.A., Chiew, Y.C., Yarmush, M.L., Wertheim, M.S.: Development and validation of a simple antigen—antibody model. AIChE J. 41(4), 974–984 (1995)

    Article  Google Scholar 

  16. Kalyuzhnyi, Y., Docherty, H., Cummings, P.T.: Resummed thermodynamic perturbation theory for central force associating potential: one-patch model. J. Chem. Phys. 133(4), 044502 (2010)

    Article  ADS  Google Scholar 

  17. Giacometti, A., Lado, F., Largo, J., Pastore, G., Sciortino, F.: Effects of patch size and number within a simple model of patchy colloids. J. Chem. Phys. 132, 174110 (2010)

    Article  ADS  Google Scholar 

  18. Kern, N., Frenkel, D. Fluid-fluid coexistence in colloidal systems with short-ranged strongly directional attraction. J. Chem. Phys. 118(21), 9882–9889 (2003)

    Article  ADS  Google Scholar 

  19. Andersen, H.C.: Cluster expansions for hydrogen-bonded fluids. 1. Molecular association in dilute gases. J. Chem. Phys. 59(9), 4714–4725 (1973)

    Article  ADS  Google Scholar 

  20. Andersen, H.C.: Cluster expansions for hydrogen-bonded fluids. 2. Dense liquids. J. Chem. Phys. 61(12), 4985–4992 (1974)

    Article  ADS  Google Scholar 

  21. Chandler, D., Pratt, L.R.: Statistical-mechanics of chemical-equilibria and intramolecular structures of nonrigid molecules in condensed phases. J. Chem. Phys. 65(8), 2925–2940 (1976)

    Article  ADS  Google Scholar 

  22. Hoye, J.S., Olaussen, K.: Statistical mechanical model with chemical-reaction. Physica A 104(3), 435–446 (1980)

    Article  ADS  Google Scholar 

  23. Shah, J., et al.: Balancing local order and long-ranged interactions in the molecular theory of liquid water. J. Chem. Phys. 127, 144508 (2007)

    Article  ADS  Google Scholar 

  24. Pratt, L.R., Chandler, D.: Hydrophobic solvation of nonspherical solutes. J. Chem. Phys. 73(7), 3430–3433 (1980)

    Article  ADS  Google Scholar 

  25. Joslin, C.G., et al.: Theory and simulation of associating liquid-mixtures. 2. Mol. Phys. 62(4), 843–860 (1987)

    Article  ADS  Google Scholar 

  26. Segura, C.J., Chapman, W.G., Shukla, K.P.: Associating fluids with four bonding sites against a hard wall: density functional theory. Mol. Phys. 90(5), 759–771 (1997)

    ADS  Google Scholar 

  27. Bymaster, A., Dominik, A., Chapman, W.G.: Hydration structure and interfacial properties of water near a hydrophobic solute from a fundamental measure density functional theory. J. Phys. Chem. C 111(43), 15823–15831 (2007)

    Article  Google Scholar 

  28. Ghonasgi, D., Chapman, W.G.: Theory and simulation for associating chain fluids. Mol. Phys. 80(1), 161–176 (1993)

    Article  ADS  Google Scholar 

  29. Ghonasgi, D., Chapman, W.G.: Theory and simulation for associating fluids with 4 bonding sites. Mol. Phys. 79(2), 291–311 (1993)

    Article  ADS  Google Scholar 

  30. Ghonasgi, D., Chapman, W.G.: Theory and simulation for associating hard chain fluids. Mol. Phys. 83(1), 145–158 (1994)

    Article  ADS  Google Scholar 

  31. Segura, C.J., Zhang, J., Chapman, W.G.: Binary associating fluid mixtures against a hard wall: density functional theory and simulation. Mol. Phys. 99(1), 1–12 (2001)

    Article  ADS  Google Scholar 

  32. Yu, Y., Wu, J.: A fundamental-measure theory for inhomogeneous associating fluids. J. Chem. Phys. 116, 7094–7103 (2002)

    Article  ADS  Google Scholar 

  33. Lee, L.L.: A potential distribution approach to fused heterochain molecules. 1. Mixtures of hard dumbbells and spheres. J. Chem. Phys. 103(10), 4221–4233 (1995)

    Article  ADS  Google Scholar 

  34. Chapman, W.G.: Prediction of the thermodynamic properties of associating Lennard-Jones fluids—theory and simulation. J. Chem. Phys. 93(6), 4299–4304 (1990)

    Article  ADS  Google Scholar 

  35. Dominik, A., Jain, P., Chapman, W.G.: Modified thermodynamic perturbation theory for fused-sphere dimer fluids. Mol. Phys. 103(10), 1387–1394 (2005)

    Article  ADS  Google Scholar 

  36. Ghonasgi, D., Chapman, W.G.: Prediction of the properties of model polymer-solutions and blends. AIChE J. 40(5), 878–887 (1994)

    Article  Google Scholar 

  37. Ghonasgi, D., Chapman, W.G.: A new equation of state for hard chain molecules. J. Chem. Phys. 100(9), 6633–6639 (1994)

    Article  ADS  Google Scholar 

  38. Ghonasgi, D., Llano-Restrepo, M., Chapman, W.G.: Henry’s law constant for diatomic and polyatomic Lennard-Jones molecules. J. Chem. Phys. 98(7), 5662 (1993)

    Article  ADS  Google Scholar 

  39. Chapman, W.G., et al.: SAFT—equation-of-state solution model for associating fluids. Fluid Phase Equilib. 52, 31–38 (1989)

    Article  Google Scholar 

  40. Chapman, W.G., et al.: New reference equation of state for associating liquids. Ind. Eng. Chem. Res. 29(8), 1709–1721 (1990)

    Article  Google Scholar 

  41. Dominik, A., Chapman, W.G.: Thermodynamic model for branched polyolefins using the PC-SAFT equation of state. Macromolecules 38(26), 10836–10843 (2005)

    Article  ADS  Google Scholar 

  42. Dominik, A., Jain, S., Chapman, W.G.: New equation of state for polymer solutions based on the statistical associating fluid theory (SAFT)—dimer equation for hard-chain molecules. Ind. Eng. Chem. Res. 46(17), 5766–5774 (2007)

    Article  Google Scholar 

  43. Gross, J., Sadowski, G.: Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. J. Chem. Phys. 40(4), 1244–1260 (2001)

    Google Scholar 

  44. Huang, S.H., Radosz, M.: Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. 29(11), 2284–2294 (1990)

    Article  Google Scholar 

  45. Pamies, J.C., Vega, L.F.: Vapor-liquid equilibria and critical behavior of heavy n-alkanes using transferable parameters from the soft-SAFT equation of state. Ind. Eng. Chem. Res. 40(11), 2532–2543 (2001)

    Article  Google Scholar 

  46. Gil-Villegas, A., et al.: Statistical associating fluid theory for chain molecules with attractive potentials of variable range. J. Chem. Phys. 106, 4168–4186 (1997)

    Article  ADS  Google Scholar 

  47. Sauer, S.G., Chapman, W.G.: A parametric study of dipolar chain theory with applications to ketone mixtures. Ind. Eng. Chem. Res. 42(22), 5687–5696 (2003)

    Article  Google Scholar 

  48. Chapman, W.G., et al.: Phase behavior applications of SAFT based equations of state—from associating fluids to polydisperse, polar copolymers. Fluid Phase Equilib. 217(2), 137–143 (2004)

    Article  Google Scholar 

  49. Rosenfeld, Y.: Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63(9), 980–983 (1989)

    Article  ADS  Google Scholar 

  50. Tarazona, P.: Free-energy density functional for hard-spheres. Phys. Rev. A 31, 2672–2679 (1985)

    Article  ADS  Google Scholar 

  51. Bymaster, A., Chapman, W.G.: An iSAFT density functional theory for associating polyatomic molecules. J. Phys. Chem. B 114(38), 12298–12307 (2010)

    Article  Google Scholar 

  52. Jain, S., Dominik, A., Chapman, W.G.: Modified interfacial statistical associating fluid theory: a perturbation density functional theory for inhomogeneous complex fluids. J. Chem. Phys. 127(24) (2007)

  53. Tripathi, S., Chapman, W.G.: Microstructure and thermodynamics of inhomogeneous polymer blends and solutions. Phys. Rev. Lett. 94(8), 087801-1 (2005)

    Article  ADS  Google Scholar 

  54. Tripathi, S., Chapman, W.G.: Microstructure of inhomogeneous polyatomic mixtures from a density functional formalism for atomic mixtures. J. Chem. Phys. 122(9), 094506 (2005)

    Article  ADS  Google Scholar 

  55. Kierlik, E., Rosinberg, M.L.: A perturbation density-functional theory for polyatomic fluids. I. Rigid molecules. J. Chem. Phys. 97(12), 9222–9239 (1992)

    Article  ADS  Google Scholar 

  56. Kierlik, E., Rosinberg, M.L.: A perturbation density functional theory for polyatomic fluids. II. Flexible molecules. J. Chem. Phys. 99(5), 3950–3965 (1993)

    Article  ADS  Google Scholar 

  57. Kierlik, E., Rosinberg, M.L.: Perturbation density functional theory for polyatomic fluids. III. Application to hard chain molecules in slitlike pores. J. Chem. Phys. 100(2), 1716 (1994)

    Article  ADS  Google Scholar 

  58. Yu, Y.-X., Wu, J.: Density functional theory for inhomogeneous mixtures of polymeric fluids. J. Chem. Phys. 117, 2368 (2002)

    Article  ADS  Google Scholar 

  59. Tripathi, S., Chapman, W.G.: A density functional approach to chemical reaction equilibria in confined systems: application to dimerization. J. Chem. Phys. 118(17), 7993–8003 (2003)

    Article  ADS  Google Scholar 

  60. Segura, C.J., Chapman, W.G.: Associating fluids with 4 bonding sites against solid-surfaces—Monte-Carlo simulations. Mol. Phys. 86(3), 415–442 (1995)

    Article  ADS  Google Scholar 

  61. Segura, C.J., et al.: A comparison of density functional and integral equation theories vs Monte Carlo simulations for hard sphere associating fluids near a hard wall. J. Chem. Phys. 108(12), 4837–4848 (1998)

    Article  ADS  Google Scholar 

  62. Bryk, P., et al.: Phase transition of short linear molecules adsorbed on solid surfaces from a density functional approach. J. Phys. Chem. B 109(7), 2977–2984 (2005)

    Article  Google Scholar 

  63. Bryk, P., Pizio, O., Sokolowski, S.: Capillary condensation of short-chain molecules. J. Chem. Phys. 122(19), 1–7 (2005)

    Article  Google Scholar 

  64. Bryk, P., Pizio, O., Sokolowski, S.: Density functional theory of adsorption of mixtures of charged chain particles and spherical counterions. J. Chem. Phys. 122(17), 174906 (2005)

    Article  ADS  Google Scholar 

  65. Bryk, P., Sokolowski, S.: Short chains at solid surfaces: wetting transition from a density functional approach. J. Chem. Phys. 121(22), 11314–11321 (2004)

    Article  ADS  Google Scholar 

  66. Bryk, P., Sokolowski, S., Pizio, O.: Density functional theory for inhomogeneous associating chain fluids. J. Chem. Phys. 125(2) (2006)

  67. Malijevsky, A., Bryk, P., Sokolowski, S.: Density functional approach for inhomogeneous star polymer fluids. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 72(3), 032801 (2005)

    Article  ADS  Google Scholar 

  68. Patrykiejew, A., Sokolowski, S., Henderson, D.: The structure of associating fluids restricted by permeable walls: a density functional approach. Mol. Phys. 95(2), 211–218 (1998)

    Article  Google Scholar 

  69. Patrykiejew, A., et al.: Density functional approach to the description of fluids in contact with bilayers. J. Chem. Phys. 132(24), 244704 (2010)

    Article  ADS  Google Scholar 

  70. Pizio, O., et al.: Phase behavior of ionic fluids in slitlike pores: a density functional approach for the restricted primitive model. J. Chem. Phys. 121(23), 11957–11964 (2004)

    Article  ADS  Google Scholar 

  71. Pizio, O., et al.: Density-functional theory for fluid mixtures of charged chain particles and spherical counterions in contact with charged hard wall: adsorption, double layer capacitance, and the point of zero charge. J. Chem. Phys. 123(21), 214902 (2005)

    Article  ADS  Google Scholar 

  72. Pizio, O., Patrykiejew, A., Sokolowski, S.: Evaluation of liquid-vapor density profiles for associating fluids in pores from density-functional theory. J. Chem. Phys. 113(23), 10761–10767 (2000)

    Article  ADS  Google Scholar 

  73. Fu, D., Wu, J.: Vapor-liquid equilibria and interfacial tensions of associating fluids within a density functional theory. Ind. Eng. Chem. Res. 44, 1120–1128 (2005)

    Article  Google Scholar 

  74. Tripathi, S., Chapman, W.G.: Density-functional theory for polar fluids at functionalized surfaces. I. Fluid-wall association. J. Chem. Phys. 119(23), 12611–12620 (2003)

    Article  ADS  Google Scholar 

  75. Tripathi, S., Chapman, W.G.: Adsorption of associating fluids at active surfaces: a density functional theory. Condens. Matter Phys. 6, 523–540 (2003)

    Google Scholar 

  76. Stillinger, F.H.: Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solution Chem. 2(2–3), 141–158 (1973)

    Article  Google Scholar 

  77. Lum, K., Chandler, D., Weeks, J.: Hydrophobicity at small and large length scales. J. Phys. Chem. B 103(22), 4570–4577 (1999)

    Article  Google Scholar 

  78. Sun, S.X.: Weighted density functional theory of the solvophobic effect. Phys. Rev. E 64(2 Pt 1), 021512 (2001)

    Article  ADS  Google Scholar 

  79. Reddy, G., Yethiraj, A.: The behavior of fluids near solutes: a density functional theory and computer simulation study. J. Chem. Phys. 121(9), 4203–4209 (2004)

    Article  ADS  Google Scholar 

  80. Pallas, N.R., Harrison, Y.: An automated drop shape apparatus and the surface-tension of pure water. Colloids Surf. 43(2–4), 169–194 (1990)

    Article  Google Scholar 

  81. Jorgensen, W.L., Madura, J.D.: Temperature and size dependence for Monte-Carlo simulations of Tip4p water. Mol. Phys. 56(6), 1381–1392 (1985)

    Article  ADS  Google Scholar 

  82. Luck, W.A.P.: Spectroscopic studies concerning structure and thermodynamic behaviour of H2O CH3OH and C2H5OH. Discuss. Faraday Soc. 43, 115–127 (1967)

    Article  Google Scholar 

  83. Soper, A.K., Bruni, F., Ricci, M.A.: Site-site pair correlation functions of water from 25 to 400 °C: revised analysis of new and old diffraction data. J. Chem. Phys. 106(1), 247–254 (1997)

    Article  ADS  Google Scholar 

  84. Bondarenko, G.V., Gorbaty, Y.E.: An infrared study of water-vapor in the temperature-range 573–723 K—dimerization enthalpy and absorption intensities for monomer and dimer. Mol. Phys. 74(3), 639–647 (1991)

    Article  ADS  Google Scholar 

  85. Joesten, M.D., Schaad, L.: Hydrogen Bonding. Dekker, New York (1974)

    Google Scholar 

  86. Suresh, S., Naik, V.M.: Hydrogen bond thermodynamic properties of water from dielectric constant data. J. Chem. Phys. 113(21), 9727–9732 (2000)

    Article  ADS  Google Scholar 

  87. Zielkiewicz, J.: Structural properties of water: comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. J. Chem. Phys. 123(10), 104501 (2005)

    Article  ADS  Google Scholar 

  88. Ashbaugh, H.S., Pratt, L.R.: Colloquium: scaled particle theory and the length scales of hydrophobicity. Rev. Mod. Phys. 78(1), 159–178 (2006)

    Article  ADS  Google Scholar 

  89. Floris, F.: Modeling the cavitation free energy. J. Phys. Chem. B 109(50), 24061–24070 (2005)

    Article  Google Scholar 

  90. Li, J., et al.: Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. Biomaterials 27(22), 4132–4140 (2006)

    Article  Google Scholar 

  91. Sijbesma, R.P., et al.: Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278(5343), 1601–1604 (1997)

    Article  ADS  Google Scholar 

  92. Bucior, K., et al.: Simple density functional approach to adsorption of biomolecules on solid surfaces. J. Chem. Phys. 126(9), 094704 (2007)

    Article  ADS  Google Scholar 

  93. Bymaster, A.S.: Ph.D. Thesis, Rice University (2009)

  94. McGarrity, E.S., Thijssen, J.M., Besseling, N.A.M.: Fluids density functional theory studies of supramolecular polymers at a hard surface. J. Chem. Phys. 133(8), 084902 (2010)

    Article  ADS  Google Scholar 

  95. Yethiraj, A., Hall, C.K.: Equations of state for star polymers. J. Chem. Phys. 94(5), 3943–3948 (1991)

    Article  ADS  Google Scholar 

  96. Burnworth, M., et al.: Optically healable supramolecular polymers. Nature 472(7343), 334–337 (2011)

    Article  ADS  Google Scholar 

  97. Cordier, P., et al.: Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181), 977–980 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter G. Chapman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Z., Bymaster, A., Emborsky, C. et al. Insights into Associating Fluid Properties and Microstructure from Classical Density Functional Theory. J Stat Phys 145, 467–480 (2011). https://doi.org/10.1007/s10955-011-0263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0263-2

Keywords

Navigation