Skip to main content
Log in

Dynamics of Hydration of Alkylsulfonate Anions in Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The 17O-NMR spin-lattice relaxation times (T 1) of water molecules in aqueous solutions of n-alkylsulfonate (C1 to C6) and arylsulfonic anions were determined as a function of concentration at 298 K. Values of the dynamic hydration number, \((\mathrm{S}^{-}) = n_{\mathrm{h}}^{ -} (\tau_{\mathrm{c}}^{-} /\tau_{\mathrm{c}}^{0} - 1)\), were determined from the concentration dependence of T 1. The ratios (\(\tau_{\mathrm{c}}^{ -}/\tau_{\mathrm{c}}^{0}\)) of the rotational correlation times (\(\tau_{\mathrm{c}}^{ -} \)) of the water molecules around each sulfonate anion in the aqueous solutions to the rotational correlation time of pure water (\(\tau_{\mathrm{c}}^{0}\)) were obtained from the n DHN(S) and the hydration number (\(n_{\mathrm{h}}^{ -} \)) results, which was calculated from the water accessible surface area (ASA) of the solute molecule. The \(\tau_{\mathrm{c}}^{ -}/\tau_{\mathrm{c}}^{0}\) values for alkylsulfonate anions increase with increasing ASA in the homologous-series range of C1 to C4, but then become approximately constant. This result shows that the water structures of hydrophobic hydration near large size alkyl groups are less ordered. The rotational motions of water molecules around an aromatic group are faster than those around an n-alkyl group with the same ASA. That is, the number of water–water hydrogen bonds in the hydration water of aromatic groups is smaller in comparison with the hydration water of an n-alkyl group having the same ASA. Hydrophobic hydration is strongly disturbed by a sulfonate group, which acts as a water structure breaker. The disturbance effect decreases in the following order: \(\mbox{--} \mathrm{SO}_{3}^{-} > \mbox{--} \mathrm{NH}_{3}^{ +} > \mathrm{OH}> \mathrm{NH}_{2}\). The partial molar volumes and viscosity B V coefficients for alkylsulfonate anions are linearly dependent on their n DHN(S) values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Uedaira, H., Uedaira, H.: Role of hydration of polyhydroxy compounds in biological systems. Cell. Mol. Biol. 47, 823–830 (2001)

    CAS  Google Scholar 

  2. Kornblatt, J.A., Kornblatt, M.J.: Water as its applies to the function of enzymes. Int. Rev. Cyt. 215, 49–73 (2002)

    Article  CAS  Google Scholar 

  3. Pal, S.K., Zewail, A.H.: Dynamics of water in biological recognition. Chem. Rev. 104, 2099–2123 (2004)

    Article  CAS  Google Scholar 

  4. Dill, K.A., Truskett, T.M., Vlachy, V., Hribar-Lee, B.: Modeling water, the hydrophobic effect, and ion solvation. Annu. Rev. Biophys. Biomol. Struct. 34, 173–199 (2005)

    Article  CAS  Google Scholar 

  5. Collins, K.D., Neilson, G.W., Enderby, J.E.: Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys. Chem. 128, 95–104 (2007)

    Article  CAS  Google Scholar 

  6. Rand, R.P.: The lipid–water interface: revelations by osmotic stress. Int. Rev. Cyt. 215, 33–48 (2002)

    Article  CAS  Google Scholar 

  7. Makhatadze, G.I., Privalov, P.L.: Hydration effects in protein unfolding. Biophys. Chem. 51, 291–309 (1994)

    Article  CAS  Google Scholar 

  8. Graziano, G., Lee, B.: Hydration of aromatic hydrocarbons. J. Phys. Chem. B105, 10367–10372 (2001)

    Google Scholar 

  9. Graziano, G.: Aliphatics vs. aromatics hydration thermodynamics. Biophys. Chem. 110, 249–258 (2004)

    Article  CAS  Google Scholar 

  10. Privalov, P.L., Makhatadze, G.I.: Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J. Mol. Biol. 213, 385–391 (1990)

    Article  CAS  Google Scholar 

  11. Cabani, S., Mollica, V., Lepori, L., Lobo, S.T.: Volume changes in the proton ionization of amines in water. 2. Amino alcohols, amino ethers, and diamines. J. Phys. Chem. 81, 987–993 (1977)

    Article  CAS  Google Scholar 

  12. Chalikian, T.V.A., Sarvazyan, P., Breslauer, K.J.: Partial molar volumes, expansibilities, and compressibilities of α,ω-aminocarboxylic acids in aqueous solutions between 18 and 55 °C. J. Phys. Chem. 97, 13017–13026 (1993)

    Article  CAS  Google Scholar 

  13. Chalikian, T.V., Gindikin, V.S., Breslauer, K.J.: Hydration of diglycyl tripeptides with non-polar side chains: a volumetric study. Biophys. Chem. 75, 57–71 (1998)

    Article  CAS  Google Scholar 

  14. Murphy, K.P.: Hydration and convergence temperature on the use and interpretation of correlation plots. Biophys. Chem. 51, 311–326 (1994)

    Article  CAS  Google Scholar 

  15. Makhatadze, G.I., Privalov, P.L.: Energetics of protein structure. Adv. Protein Chem. 47, 307–425 (1995)

    Article  CAS  Google Scholar 

  16. Karplus, P.A.: Hydrophobicity regained. Protein Sci. 6, 1302–1307 (1997)

    Article  CAS  Google Scholar 

  17. Gallicchio, E., Kubo, M.M., Levy, R.M.: Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B104, 6271–6285 (2000)

    Google Scholar 

  18. Blokzijl, W., Emgberts, J.B.F.N.: Hydrophobic effects: opinions and facts. Angew. Chem., Int. Ed. Engl. 32, 1545–1579 (1993)

    Article  Google Scholar 

  19. Kjellander, R., Marcelja, S.: Perturbation of hydrogen bonding in water near polar surfaces. Chem. Phys. Lett. 120, 393–396 (1985)

    Article  CAS  Google Scholar 

  20. Cheng, Y.K., Rossky, P.J.: Surface topography dependence of biomolecular hydrophobic hydration. Nature 392, 696–698 (1998)

    Article  CAS  Google Scholar 

  21. Lum, K., Chandler, D., Weeks, J.D.: Hydrophobicity at small and large length scales. J. Phys. Chem. B103, 4570–4577 (1999)

    Google Scholar 

  22. Rajamani, S., Truskett, T.M., Garde, S.: Hydrophobic hydration from small to large lengthscales: understanding and manipulating the crossover. Proc. Natl. Acad. Sci. USA 102, 9475–9482 (2005)

    Article  CAS  Google Scholar 

  23. Okouchi, S., Tsuchida, K., Yoshida, S., Ishihara, Y., Ikeda, S., Uedaira, H.: Dynamics of the hydration of amino alcohols and diamines. Bull. Chem. Soc. Jpn. 78, 424–429 (2005)

    Article  CAS  Google Scholar 

  24. Okouchi, S., Moto, T., Ishihara, Y., Numajiri, H., Uedaira, H.: Hydration of amines, diamines, polyamines and amides studied by NMR. J. Chem. Soc. Faraday Trans. 92, 1853–1857 (1996)

    Article  Google Scholar 

  25. Ishihara, Y., Okouchi, S., Uedaira, H.: Dynamics of hydration of alcohols and diols in aqueous solutions. J. Chem. Soc. Faraday Trans. 93, 3337–3342 (1997)

    Article  CAS  Google Scholar 

  26. Hertz, H.G.: Microdynamic behaviour of liquids as studied by NMR relaxation times. Prog. Nucl. Magn. Reson. Spectrosc. 3, 159–230 (1967)

    Article  CAS  Google Scholar 

  27. Hertz, H.G., Maurer, R., Killie, S.: An NMR study of dynamics in aqueous strong acid solutions. Part I. The B′ coefficients. Z. Phys. Chem. 172, 157–183 (1991)

    CAS  Google Scholar 

  28. Uedaira, H., Uedaira, H.: Nuclear magnetic relaxation of 2H and 23Na in aqueous solutions of sodium sulfonate. Nippon Kagaku Kaishi 107, 1265–1269 (1986)

    Google Scholar 

  29. Lazaridis, T., Paulaitis, M.E.: Simulation studies of the hydration entropy of simple, hydrophobic solutes. J. Phys. Chem. 98, 635–642 (1994)

    Article  CAS  Google Scholar 

  30. Tamaki, K., Ohara, Y., Kurachi, H., Akiyama, M., Odaki, H.: Viscosity B coefficients for some homologous series of organic electrolytes in aqueous solutions. The effect of ionic groups. Bull. Chem. Soc. Jpn. 47, 384–388 (1974)

    Article  CAS  Google Scholar 

  31. Russo, D., Hura, G., Head-Gordon, T.: Hydration dynamics near a model protein surface. Biophys. J. 86, 1852–1862 (2004)

    Article  CAS  Google Scholar 

  32. Jorgensen, W.L., Gao, J., Ravimohan, C.: Monte Carlo simulations of alkanes in water: hydration numbers and the hydrophobic effect. J. Phys. Chem. 89, 3470–3473 (1985)

    Article  CAS  Google Scholar 

  33. Zielenkiewicz, W., Poznanski, J.: Partial molar volumes of hydrophobic compounds—insight into the solvation shell? Part I. J. Solution Chem. 27, 245–254 (1998)

    Article  CAS  Google Scholar 

  34. Uedaira, H., Ishimura, M., Tsuda, S., Uedaira, H.: Hydration of oligosaccharides. Bull. Chem. Soc. Jpn. 63, 3376–3379 (1990)

    Article  CAS  Google Scholar 

  35. Ishimura, M., Uedaira, H.: Natural-abundance oxygen-17 magnetic relaxation in aqueous solutions of apolar amino acid and glycine peptide. Bull. Chem. Soc. Jpn. 63, 1–5 (1990)

    Article  CAS  Google Scholar 

  36. Abragam, A.: The Principles of Nuclear Magnetism. Oxford University Press, London (1961)

    Google Scholar 

  37. Bagno, A., Lovato, G., Scorrano, G., Wijnen, J.W.: Solvation of nonelectrolytes in water probed by 17O NMR relaxation of the solvent. J. Phys. Chem. 97, 4601–4607 (1993)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichi Okouchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okouchi, S., Thanatuksorn, P., Ikeda, S. et al. Dynamics of Hydration of Alkylsulfonate Anions in Aqueous Solutions. J Solution Chem 40, 775–785 (2011). https://doi.org/10.1007/s10953-011-9687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9687-1

Keywords

Navigation