Skip to main content
Log in

Quantitative Magneto-Optical Imaging of Supercurrents in Heavy-Ion Irradiated Cuprate and Pnictide Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Spatial distributions of magnetic field and of current density in superconductors are obtained, in real-time, by the magneto-optical imaging technique with an indicator film. Quantitative values of the local magnetic field and then of the local current density were achieved by a careful optical calibration and custom algorithms for the inversion of Biot–Savart law. An iterative procedure was developed for the correction of artifacts due to the coupling of the indicator film magnetization with the in-plane magnetic field generated by the superconducting sample. This technique is highly valuable when the sample under study has nonuniform properties. Several cases of such systems are shown. Particular attention is devoted to the local variation of structural and chemical properties by means of heavy-ion irradiation. A comparative study of swift-ion irradiation effects between cuprate and pnictide superconductors is addressed. For the case of cuprate materials, some successful applications of the heavy ion irradiation engineering are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The linearly polarized light is actually refracted twice from the magneto-optical active part of the indicator film, therefore doubling the Faraday rotation.

  2. Irradiations were performed at I.N.F.N. Laboratories, Legnaro (INFN-LNL) and Catania (INFN-LNS), with linear accelerators for the Au-ion energy range 70–250 MeV and with a superconducting cyclotron for the Au-ion energy range 2–4.2 GeV.

References

  1. Blatter, G., Feigel’Man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 66, 1125–1388 (1994)

    Article  ADS  Google Scholar 

  2. Brandt, E.H.: Rep. Prog. Phys. 58, 1465 (1995)

    Article  ADS  Google Scholar 

  3. Brandt, E.H.: Phys. Rev. B 46, 8628 (1992)

    Article  ADS  Google Scholar 

  4. Brandt, E.H.: Phys. Rev. B 54, 4246 (1996)

    Article  ADS  Google Scholar 

  5. Brandt, E.H.: Phys. Rev. B 64, 024505 (2001)

    Article  ADS  Google Scholar 

  6. Bean, C.P.: Phys. Rev. Lett. 8, 250–253 (1962)

    Article  ADS  MATH  Google Scholar 

  7. Bean, C.P.: Rev. Mod. Phys. 36, 31–39 (1964)

    Article  ADS  Google Scholar 

  8. Schuster, Th., Kuhn, H., Brandt, E.H., Indenbom, M., Koblischka, M.R., Konczykowski, M.: Phys. Rev. B 50, 16684 (1994)

    Article  ADS  Google Scholar 

  9. Schuster, Th., Kuhn, H., Brandt, E.H., Indenbom, M.V., Kläser, M., Müller-Vogt, G., Habermeier, H.-U., Kronmüller, H., Forkl, A.: Phys. Rev. B 52, 10375 (1995)

    Article  ADS  Google Scholar 

  10. Dorosinskii, L.A., Indenbom, M.V., Nikitenko, V.I., Ossip’yan, Y.A., Polyanskii, A.A., Vlasko-Vlasov, V.K.: Physica C 203, 149 (1992)

    Article  ADS  Google Scholar 

  11. Jooss, Ch., Albrecht, J., Kuhn, H., Leonhardt, S., Kronmuller, H.: Rep. Prog. Phys. 65, 651 (2002)

    Article  ADS  Google Scholar 

  12. Jenkins, M.L., Kirk, M.A.: Characterisation of Radiation Damage by Transmission Electron Microscopy Taylor & Francis, New York (2000). ISBN: 978-0-7503-0748-2

    Book  Google Scholar 

  13. Hensel, B., Roas, B., Henke, S., Hopfengartner, R., Lippert, M., Strobel, J.P., Vildic, M., Saemann-Ischenko, G., Klaumunzer, S.: Phys. Rev. B 42, 4135 (1990)

    Article  ADS  Google Scholar 

  14. Civale, L., Marwick, A.D., Worthington, T.K., Kirk, M.A., Thompson, J.R., Krusin-Elbaum, L., Sun, Y., Clem, J.R., Holtzberg, F.: Phys. Rev. Lett. 67, 648 (1991)

    Article  ADS  Google Scholar 

  15. Konczykowski, M., Rullier-Albenque, F., Yacoby, E.R., Shaulov, A., Yeshurun, Y., Lejay, P.: Phys. Rev. B 44, 7167 (1991)

    Article  ADS  Google Scholar 

  16. Nakajima, Y., Tsuchiya, Y., Taen, T., Tamegai, T., Okayasu, S., Sasase, M.: Phys. Rev. B 80, 012510 (2009).

    Article  ADS  Google Scholar 

  17. Moore, J.D., Cohen, L.F., Yeshurun, Y., Caplin, A.D., Morrison, K., Yates, K.A., McGilvery, C.M., Perkins, J.M., McComb, D.W., Trautmann, C., Ren, Z.A., Yang, J., Lu, W., Dong, X.L., Zhao, Z.X.: Supercond. Sci. Technol. 22, 125023 (2009).

    Article  ADS  Google Scholar 

  18. Prozorov, R., Tanatar, M.A., Roy, B., Ni, N., Bud’ko, S.L., Canfield, P.C., Hua, J., Welp, U., Kwok, W.K.: Phys. Rev. B 81, 094509 (2010)

    Article  ADS  Google Scholar 

  19. Tamegai, T., Taen, T., Yagyuda, H., Tsuchiya, Y., Mohan, S., Taniguchi, T., Nakajima, Y., Okayasu, S., Sasase, M., Kitamura, H., Murakami, T., Kambara, T., Kanai, Y.: Supercond. Sci. Technol. 25, 084008 (2012)

    Article  ADS  Google Scholar 

  20. Johansen, T.H., Baziljevich, M., Bratsberg, H., Galperin, Y., Lindelof, P.E., Shen, Y., Vase, P.: Phys. Rev. B 54, 16264 (1996)

    Article  ADS  Google Scholar 

  21. Laviano, F., Botta, D., Chiodoni, A., Gerbaldo, R., Ghigo, G., Gozzelino, L., Zannella, S., Mezzetti, E.: Supercond. Sci. Technol. 16, 71 (2003)

    Article  ADS  Google Scholar 

  22. Laviano, F., Botta, D., Chiodoni, A., Gerbaldo, R., Ghigo, G., Gozzelino, L., Mezzetti, E.: Phys. Rev. B 68, 014507 (2003)

    Article  ADS  Google Scholar 

  23. Rovelli, A., Amato, A., Botta, D., Chiodoni, A., Gerbaldo, R., Ghigo, G., Gozzelino, L., Laviano, F., Minetti, B., Mezzetti, E.: Nucl. Instrum. Methods Phys. Res. B 240, 842 (2005)

    Article  ADS  Google Scholar 

  24. Nakajima, Y., Taen, T., Tamegai, T.: J. Phys. Soc. Jpn. 78, 023702 (2009)

    Article  ADS  Google Scholar 

  25. Utz, B., Semerad, R., Bauer, M., Prusseit, W., Berberich, P., Kinder, H.: IEEE Trans. Appl. Supercond. 7, 1272 (1997)

    Article  Google Scholar 

  26. Taen, T., Yagyuda, H., Nakajima, Y., Tamegai, T., Okayasu, S., Kitamura, H., Murakami, T., Laviano, F., Ghigo, G.: Physica C (2012). doi:10.1016/j.physc.2012.02.040

    Google Scholar 

  27. Schuster, Th., Kuhn, H., Brandt, E.H.: Phys. Rev. B 54, 3514 (1996)

    Article  ADS  Google Scholar 

  28. Laviano, F., Gerbaldo, R., Ghigo, G., Gozzelino, L., Minetti, B., Mezzetti, E.: Appl. Phys. Lett. 89, 082514 (2006)

    Article  ADS  Google Scholar 

  29. Gerbaldo, R., Ghigo, G., Gozzelino, L., Laviano, F., Lopardo, G., Minetti, B., Mezzetti, E., Cherubini, R., Rovelli, A.: J. Appl. Phys. 104, 063919 (2008)

    Article  ADS  Google Scholar 

  30. Laviano, F., Gerbaldo, R., Ghigo, G., Gozzelino, L., Minetti, B., Rovelli, A., Mezzetti, E.: IEEE Sens. J. 10, 863 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Partial support from the INFN-TERASPARC project is acknowledged. Staff of INFN laboratories is gratefully acknowledged for helping during the irradiation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Laviano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laviano, F., Gerbaldo, R., Ghigo, G. et al. Quantitative Magneto-Optical Imaging of Supercurrents in Heavy-Ion Irradiated Cuprate and Pnictide Superconductors. J Supercond Nov Magn 26, 2063–2067 (2013). https://doi.org/10.1007/s10948-012-1939-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1939-9

Keywords

Navigation