Skip to main content
Log in

Interaction of Curcumin and Diacetylcurcumin with the Lipocalin Member β-Lactoglobulin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The binding of curcumin (CUR) and diacetylcurcumin (DAC) to bovine beta-lactoglobulin (BLG) genetic variant B was investigated by fluorescence and circular dichroism techniques. The binding parameters including number of substantive binding sites and the binding constants have been evaluated by fluorescence quenching method. The distance (r) between donor (BLG) and acceptor (CUR and DAC) was obtained according to the Förster’s theory of non-radiative energy transfer. The far-UV circular dichroism spectra were used to investigate the possible changes in the secondary structure of BLG in the presence of CUR and DAC and showed that these two ligands change the α-helix and random coil contents of this protein to some extent. The visible circular dichroism spectra indicated that the optical activity during the ligand binding was observed due to the induced-protein chirality. All of the achieved results suggested the important role of the phenolic OH group of CUR in the binding process resulted in more affinity of CUR than DAC for binding to BLG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CUR:

Curcumin

DAC:

Diacetylcurcumin

BLG:

Beta-lactoglobulin

CD:

Circular dichroism

Asp:

Aspartic acid

Ala:

Alanine

Gly:

Glycine

Val:

Valine

HSA:

Human serum albumin

BSA:

Bovine serum albumin

References

  1. Aggarwal BB, Kumar A, Aggarwal MS, Shishodia S (2005) Curcumin derived from turmeric (Curcuma longa): a spice for all seasons. In: Preuss H (ed) Phytopharmaceuticals in cancer chemoprevention. CRC Press, Boca Raton, pp 349–387

    Google Scholar 

  2. Araújo CAC, Leon LL (2001) Mem Inst Oswaldo Cruz Rio de Jeneiro 96:723–728

    Google Scholar 

  3. Barik A, Mishra B, Kunwar A, Priyadarsini KI (2007) Chem Phys Lett 436:239–243

    Article  CAS  Google Scholar 

  4. Barik A, Priyadarsini KI, Mohan H (2003) Photochem Photobiol 77:597–603

    Article  CAS  Google Scholar 

  5. Borsari M, Ferrari E, Grandi R, Saladini M (2002) Inorg Chim Acta 328:61–68

    Article  CAS  Google Scholar 

  6. Brownlow S, Cabral JHM, Cooper R, Flwoer DR, Yewdall SJ, Polikarpov I, North ACT, Sawyer L (1997) Structure 5:481–495

    Article  CAS  Google Scholar 

  7. Busti P, Gatti CA, Delorenzi NJ (1998) Int J Biol Macro 23:143–148

    Article  CAS  Google Scholar 

  8. Dufour E, Robert P, Bertrand D, Haertlé T (1994) J Protein Chem 13:143–149

    Article  CAS  Google Scholar 

  9. Dufour E, Haertle T (1991) Biochim Biophys Acta 1079:316–320

    CAS  Google Scholar 

  10. Dufour E, Marden MC, Haertlé T (1990) FEBS Lett 277:223–226

    Article  CAS  Google Scholar 

  11. Fugate RD, Song PS (1980) Biochim Biophys Acta 625:28–42

    CAS  Google Scholar 

  12. Goel A, Kunnumakkara AB, Aggarwal BB (2007) Biochem Pharmacol 17:787–809

    Google Scholar 

  13. Govindarajan VS (1980) CRC Crit Rev Food Sci Nutr 12:199–301

    Article  CAS  Google Scholar 

  14. Jasim F, Ali F (1989) Microchem J 39:156–159

    Article  CAS  Google Scholar 

  15. Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2005) Trends Food Sci Technol 16:533–548

    Article  CAS  Google Scholar 

  16. Jiang M, Xie MX, Zheng D, Liu Y, Li XY, Cheng X (2004) J Mol Struct 692:71–80

    Article  CAS  Google Scholar 

  17. Kelly SM, Price NC (1997) Biochim Biophys Acta 1338:161–185

    CAS  Google Scholar 

  18. Kelly SM, Price NC (2000) Curr Protein Pept Sci 1:349–384

    Article  CAS  Google Scholar 

  19. Kontopidis G, Holt C, Sawyer L (2002) J. Mol Biol 318:1043–1055

    Article  CAS  Google Scholar 

  20. Kontopidis G, Holt C, Sawyer L (2004) J Dairy Sci 87:785–796

    Article  CAS  Google Scholar 

  21. Kunwar A, Barik A, Pandey R, Priyadarsini KI (2006) Biochim Biophys Acta 1760:1513–1520

    CAS  Google Scholar 

  22. Lakowicz JR, Weber G (1973) Biochemistry 12:4161–4170

    Article  CAS  Google Scholar 

  23. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer academic, New York

    Google Scholar 

  24. Manavalan P, Johnson WCJR (1987) Anal Biochem 167:76–85

    Article  CAS  Google Scholar 

  25. Mishra S, Narain U, Mishra R, Misra K (2005) Bioorg Med Chem 13:1477–1486

    Article  CAS  Google Scholar 

  26. Mohammadi K, Thompson KH, Patrick BO, Storr T, Martins C, Polishchuk E, Yuen VG, McNeill JH, Orvig C (2005) J Inorg Biochem 99:2217–2225

    Article  CAS  Google Scholar 

  27. Oliveria KMG, Valente-Mesquita VL, Botelho MM, Sawyer L, Ferreira ST, Polikarpov I (2001) Eur J Biochem 268:477–483

    Google Scholar 

  28. Pulla Reddy AC, Sudharshan E, Appu Rao AG, Lokesh BR (1999) Lipids 34:1025–1029

    Article  CAS  Google Scholar 

  29. Sahoo BK, Ghosh KS, Dasgupta S (2008) Biophys Chem 132:81–88

    Article  CAS  Google Scholar 

  30. Sawyer L, Kontopidis G (2000) Biochim Biophys Acta 1482:136–148

    CAS  Google Scholar 

  31. Sharma RA, Gescher AJ, Steward WP (2005) Eur J Cancer 41:1955–1968

    Article  CAS  Google Scholar 

  32. Sreejayan N, Rao MN (1997) J Pharm Pharmacol 49:105–107

    CAS  Google Scholar 

  33. Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Matsumoto K, Watanabe H (2004) Biol Pharm Bull 27:170–173

    Article  CAS  Google Scholar 

  34. Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K (2006) Life Sci 78:1884–1891

    Article  CAS  Google Scholar 

  35. Vajragupta O, Boonchoong P, Berliner LJ (2004) Free Radic Res 38:303–314

    Article  CAS  Google Scholar 

  36. Vajragupta O, Boonchoong P, Watanabe H, Tohda M, Kummasud N, Sumanont Y (2003) Free Radic Biol Med 35:1632–1644

    Article  CAS  Google Scholar 

  37. Wang F, Yang J, Wu X, Liu S (2005) Spectrochim Acta A Mol Biomol Spectrosc 61:2650–2656

    Article  CAS  Google Scholar 

  38. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) J Pharm Biomed Anal 15:1867–1876

    Article  CAS  Google Scholar 

  39. Ware WR (1962) J Phys Chem 66:455–458

    Article  CAS  Google Scholar 

  40. Wu SY, Pérez MD, Puyol P, Sawyer L (1999) J Biol Chem 274:170–174

    Article  CAS  Google Scholar 

  41. Yang JT, Wu CSC, Martinez HM (1986) Methods Enzymol 130:208–269

    Article  CAS  Google Scholar 

  42. Zsila F, Bikádi Z, Simonyi M (2003) Biochem Biophys Res Commun 301:776–782

    Article  CAS  Google Scholar 

  43. Zsila F, Bikádi Z, Simonyi M (2003) Tetrahedron Asymmetr 14:2433–2444

    Article  CAS  Google Scholar 

  44. Zsila F, Bikádi Z, Fitos I, Simonyi M (2004) Curr Drug Discov Tech 1:133–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports of Research Councils of Isfahan and Tehran Universities are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdol-Khalegh Bordbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, F., Bordbar, AK., Divsalar, A. et al. Interaction of Curcumin and Diacetylcurcumin with the Lipocalin Member β-Lactoglobulin. Protein J 28, 117–123 (2009). https://doi.org/10.1007/s10930-009-9171-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9171-6

Keywords

Navigation