Skip to main content

Advertisement

Log in

Echocardiographic manifestations and chemical composition of stenotic bicuspid aortic valves

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bicuspid aortic valve (BAV) is an inherited form of heart disease with only two aortic valve leaflets via a disorder of cardiac valvulogenesis. We investigated the in vivo echocardiographic features of cardiac morphology in patients with BAV and the ex vivo compositional components of all the excised BAV leaflets isolated from BAV patients. Three BAV patients were randomly selected. All patients underwent 2D transthoracic echocardiography (TTE) with a Doppler ultrasound tool. The compositional components of each respective BAV leaflet for all the excised BAVs were determined by a portable fiber-optic Raman spectroscopy. Preoperative TTE revealed the thickened and calcified BAV leaflets, and stenotic aortic flow for all BAV patients. These BAV patients exhibited severe aortic stenosis (AS) by the lower values of aortic valve area (AVA) index. One patient showed a more significant left ventricle hypertrophy, whereas two patients exhibited a significant aortic regurgitation (AR). In addition, three different Raman spectral patterns were summed up from 121 randomized Raman determinations for all the excised BAV leaflets. The main calcified deposition in each BAV leaflet was formed by large amounts of calcium hydroxyapatite and type-B carbonate apatite (Raman bands at 960 and 1070 cm−1). The calcified BAV leaflets were composed of different compositional components such as calcium hydroxyapatite, type-B carbonate apatite, lipids, proteins, cholesterol and β-carotene. The rare NL subtype of type 1 BAV morphotype was found in one patient, but two patients had the purely BAV morphotype with two equal-sized leaflets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lindman BR, Clavel MA, Mathieu P, Iung B, Lancellotti P, Otto CM, Pibarot P. Calcific aortic stenosis. Nat Rev Dis Prim. 2016;2:16006.

    Article  Google Scholar 

  2. Lerman DA, Prasad S, Alotti N. Calcific aortic valve disease: molecular mechanisms and therapeutic approaches. Eur Cardiol. 2015;10:108–12.

    Article  Google Scholar 

  3. Porras AM, McCoy CM, Masters KS. Calcific aortic valve disease: a battle of the sexes. Circ Res. 2017;120:604–6.

    Article  CAS  Google Scholar 

  4. Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55:2789–800.

    Article  Google Scholar 

  5. Ward C. Clinical significance of the bicuspid aortic valve. Heart. 2000;83:81–5.

    Article  CAS  Google Scholar 

  6. Atkins SK, Sucosky P. Etiology of bicuspid aortic valve disease: focus on hemodynamics. World J Cardiol. 2014;6:1227–33.

    Article  Google Scholar 

  7. Mordi I, Tzemos N. Bicuspid aortic valve disease: a comprehensive review. Cardiol Res Pract. 2012;2012:196037.

    Article  Google Scholar 

  8. Schneider U, Feldner SK, Hofmann C, Schöpe J, Wagenpfeil S, Giebels C, Schäfers HJ. Two decades of experience with root remodeling and valve repair for bicuspid aortic valves. J Thorac Cardiovasc Surg. 2017;153:S65–S71.

    Article  Google Scholar 

  9. Otto CM. Calcification of bicuspid aortic valves. Heart. 2002;88:321–2.

    Article  CAS  Google Scholar 

  10. Maganti K, Rigolin VH, Sarano ME, Bonow RO. Valvular heart disease: diagnosis and management. Mayo Clin Proc. 2010;85:483–500.

    Article  Google Scholar 

  11. Warnes CA. The adult with congenital heart disease: born to be bad? J Am Coll Cardiol. 2005;46:1–8.

    Article  Google Scholar 

  12. Lin AE, Basson CT, Goldmuntz E, Magoulas PL, McDermott DA, McDonald-McGinn DM, McPherson E, Morris CA, Noonan J, Nowak C, Pierpont ME, Pyeritz RE, Rope AF, Zackai E, Pober BR. Adults with genetic syndromes and cardiovascular abnormalities: clinical history and management. Genet Med. 2008;10:469–94.

    Article  Google Scholar 

  13. Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O’Brien KD, Schoen FJ, Towler DA, Yoganathan AP, Otto CM. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation. 2011;124:1783–91.

    Article  Google Scholar 

  14. Abdulkareem N, Smelt J, Jahangiri M. Bicuspid aortic valve aortopathy: genetics, pathophysiology and medical therapy. Interact Cardiovasc Thorac Surg. 2013;17:554–9.

    Article  Google Scholar 

  15. Masri A, Svensson LG, Griffin BP, Desai MY. Contemporary natural history of bicuspid aortic valve disease: a systematic review. Heart. 2017;103:1323–30.

    Article  Google Scholar 

  16. van der Wall EE. Bicuspid aortic valve; optimal diagnosis and latest interventional treatment. Neth Heart J. 2015;23:149–50.

    Article  Google Scholar 

  17. Merryman WD, Schoen FJ. Mechanisms of calcification in aortic valve disease: role of mechanokinetics and mechanodynamics. Curr Cardiol Rep. 2013;15:355.

    Article  Google Scholar 

  18. Pibarot P, Clavel MA. Outcome of aortic valve replacement in aortic stenosis: the number of valve cusps matters. Eur Heart J Cardiovasc Imaging. 2017; https://doi.org/10.1093/ehjci/jex258.

  19. Boudoulas KD, Borer JS, Boudoulas H. Etiology of valvular heart disease in the 21st century. Cardiology. 2013;126:139–52.

    Article  Google Scholar 

  20. Nishimura RA, Carabello B. Operationalizing the 2014 ACC/AHA guidelines for valvular heart disease: a guide for clinicians. J Am Coll Cardiol. 2016;67:2289–94.

    Article  Google Scholar 

  21. Chang HH, Cheng CL, Huang PJ, Lin SY. Application of scanning electron microscopy and X-ray microanalysis: FE-SEM, ESEM-EDS, and EDS mapping for studying the characteristics of topographical microstructure and elemental mapping of human cardiac calcified deposition. Anal Bioanal Chem. 2014;406:359–66.

    Article  CAS  Google Scholar 

  22. Cheng CL, Chang HH, Huang PJ, Wang WC, Lin SY. Different calcification stage in each cusp of a calcified tricuspid aortic valve. Circ J. 2017;81:1953–5.

    Article  Google Scholar 

  23. Cheng CL, Chang HH, Huang PJ, Wang WC, Lin SY. Ex vivo assessment of valve thickness/calcification of patients with calcific aortic stenosis in relation to in vivo clinical outcomes. J Mech Behav Biomed Mater. 2017;74:324–32.

    Article  Google Scholar 

  24. Jander N, Gohlke-Bärwolf C, Bahlmann E, Gerdts E, Boman K, Chambers JB, Egstrup K, Nienaber CA, Pedersen TR, Ray S, Rossebø AB, Willenheimer R, Kienzle RP, Wachtell K, Neumann FJ, Minners J. Indexing aortic valve area by body surface area increases the prevalence of severe AS. Heart. 2014;100:28–33.

    Article  Google Scholar 

  25. Minners J, Gohlke-Baerwolf C, Kaufmann BA, Bahlmann E, Gerdts E, Boman K, Chambers JB, Nienaber CA, Willenheimer R, Wachtell K, Holme I, Pedersen TR, Neumann FJ, Jander N. Adjusting parameters of aortic valve stenosis severity by body size. Heart. 2014;100:1024–30.

    Article  Google Scholar 

  26. Sievers HH, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg. 2007;133:1226–33.

    Article  Google Scholar 

  27. Mandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. Bone Rep. 2015;4:620.

    CAS  Google Scholar 

  28. Onogi C, Motoyama M, Hamaguchi H. High concentration trans form unsaturated lipids detected in a HeLa cell by Raman microspectroscopy. J Raman Spectrosc. 2008;39:555–6.

    Article  CAS  Google Scholar 

  29. Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M. Raman spectroscopy of lipids: a review. J Raman Spectrosc. 2015;46:4–20.

    Article  CAS  Google Scholar 

  30. Mordi I, Tzemos N. Bicuspid aortic valve disease: a comprehensive review. Cardiol Res Pract. 2012;2012:196037.

    Article  Google Scholar 

  31. Losenno KL, Goodman RL, Chu MW. Bicuspid aortic valve disease and ascending aortic aneurysms: gaps in knowledge. Cardiol Res Pract. 2012;2012:145202.

    Article  Google Scholar 

  32. Robicsek F, Thubrikar MJ, Cook JW, Fowler B. The congenitally bicuspid aortic valve: how does it function? Why does it fail? Ann Thorac Surg. 2004;77:177–85.

    Article  Google Scholar 

  33. Fernandes SM, Khairy P, Sanders SP, Colan SD. Bicuspid aortic valve morphology and interventions in the young. J Am Coll Cardiol. 2007;49:2211–4.

    Article  Google Scholar 

  34. Roberts WC, Ko JM. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation. 2005;111:920–5.

    Article  Google Scholar 

  35. Sabet HY, Edwards WD, Tazelaar HD, Daly RC. Congenitally bicuspid aortic valves: a surgical pathology study of 542 cases (1991 through 1996) and a literature review of 2,715 additional cases. Mayo Clin Proc. 1999;74:14–26.

    Article  CAS  Google Scholar 

  36. Fernandes SM1, Sanders SP, Khairy P, Jenkins KJ, Gauvreau K, Lang P, Simonds H, Colan SD. Morphology of bicuspid aortic valve in children and adolescents. J Am Coll Cardiol. 2004;44:1648–51.

    Article  Google Scholar 

  37. Agarwal PP, Wells SA, Kolias TJ, AJR teaching file: aortic valve abnormality in a woman with progressive shortness of breath. AJR Am J Roentgenol. 2010;195(6 Suppl):S70–2.

    Article  Google Scholar 

  38. Schaefer BM, Lewin MB, Stout KK, Byers PH, Otto CM. Usefulness of bicuspid aortic valve phenotype to predict elastic properties of the ascending aorta. Am J Cardiol. 2007;99:686–90.

    Article  Google Scholar 

  39. Schaefer BM, Lewin MB, Stout KK, Gill E, Prueitt A, Byers PH, Otto CM. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart. 2008;94:1634–8.

    Article  CAS  Google Scholar 

  40. Ciotti GR, Vlahos AP, Silverman NH. Morphology and function of the bicuspid aortic valve with and without coarctation of the aorta in the young. Am J Cardiol. 2006;98:1096–102.

    Article  Google Scholar 

  41. Movasaghi Z, Rehman S, Rehman IU. Raman sectroscopy of bological tssues. Appl Spectro Rev. 2007;42:493–541.

    Article  CAS  Google Scholar 

  42. Bunaciu AA, Hoang VD, Aboul-Enein HY. Vibrational mcro-sectroscopy of human tissues analysis: Review. Crit Rev Anal Chem. 2017;47:194–203.

    Article  CAS  Google Scholar 

  43. Faiman R. Raman spectroscopic studies of different forms of cholesterol and its derivatives in the crystalline state. Chem Phys Lipids. 1977;18:84–104.

    Article  CAS  Google Scholar 

  44. Pilat Z, Bernatova S, Jezek J, Šerý M, Samek O, Zemánek P, Nedbal L, Trtílek M. Raman microspectroscopy of algal lipid bodies: β-carotene as a volume sensor. J Appl Phycol. 2012;24:541–6.

    Article  CAS  Google Scholar 

  45. Bonetti A, Bonifacio A, Della Mora A, Livi U, Marchini M, Ortolani F. Carotenoids co-localize with hydroxyapatite, cholesterol, and other lipids in calcified stenotic aortic valves. Ex vivo Raman maps compared to histological patterns. Eur J Histochem. 2015;59:2505.

    Article  CAS  Google Scholar 

  46. Olsztyńska-Janus S, Gąsior-Głogowska M, Szymborska-Małek K, Komorowska M, Witkiewicz W, Pezowicz C, Szotek S, Kobielarz M. Spectroscopic techniques in the study of human tissues and their components. Part II: Raman spectroscopy. Acta Bioeng Biomech. 2012;14:121–33.

    Google Scholar 

  47. Lamas CC, Eykyn SJ. Bicuspid aortic valve--A silent danger: analysis of 50 cases of infective endocarditis. Clin Infect Dis. 2000;30:336–41.

    Article  CAS  Google Scholar 

  48. Joziasse IC, Vink A, Cramer MJ, van Oosterhout MF, van Herwerden LA, Heijmen R, Sieswerda GT, Mulder BJ, Doevendans PA. Bicuspid stenotic aortic valves: clinical characteristics and morphological assessment using MRI and echocardiography. Neth Heart J. 2011;19:119–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Science and Technology, Taipei, Taiwan, ROC (MOST 104-2314-B-075-066-MY2) and Taiwan Association of Cardiac Vascular Surgery Research, Taipei, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Yang Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CL., Chang, HH., Huang, PJ. et al. Echocardiographic manifestations and chemical composition of stenotic bicuspid aortic valves. J Mater Sci: Mater Med 29, 80 (2018). https://doi.org/10.1007/s10856-018-6087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6087-8

Navigation