Skip to main content

Advertisement

Log in

In-situ hardening hydroxyapatite-based scaffold for bone repair

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Musculoskeletal conditions are becoming a major health concern because of an aging population and sports- and traffic-related injuries. While sintered hydroxyapatite implants require machining, calcium phosphate cement (CPC) bone repair material is moldable, self-hardens in situ, and has excellent osteoconductivity. In the present work, new approaches for developing strong and macroporous scaffolds of CPC were tested. Relationships were determined between scaffold porosity and strength, elastic modulus and fracture toughness. A biocompatible and biodegradable polymer (chitosan) and a water-soluble porogen (mannitol) were incorporated into CPC: Chitosan to make the material stronger, fast-setting and anti-washout; and mannitol to create macropores. Flexural strength, elastic modulus, and fracture toughness were measured as functions of mannitol mass fraction in CPC from 0% to 75%. After mannitol dissolution in a physiological solution, macropores were formed in CPC in the shapes of the original entrapped mannitol crystals, with diameters of 50 μm to 200 μm for cell infiltration and bone ingrowth. The resulting porosity in CPC ranged from 34.4% to 83.3% volume fraction. At 70.2% porosity, the hydroxyapatite scaffold possessed flexural strength (mean ± sd; n = 6) of (2.5 ± 0.2) MPa and elastic modulus of (0.71 ± 0.10) GPa. These values were within the range for sintered porous hydroxyapatite and cancellous bone. Predictive equations were established by regression power-law fitting to the measured data (R2 > 0.98) that described the relationships between scaffold porosity and strength, elastic modulus and fracture toughness. In conclusion, a new graft composition was developed that could be delivered during surgery in the form of a paste to harden in situ in the bone site to form macroporous hydroxyapatite. Compared to conventional CPC without macropores, the increased macroporosity of the new apatite scaffold may help facilitate implant fixation and tissue ingrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. T. Laurencin, A. M. A. Ambrosio, M. D. Borden and J. A. Cooper Jr., Annu. Rev. Biomed. Eng. 1 (1999) 19.

    Article  CAS  Google Scholar 

  2. R. Langer and J. Vacanti, Science 260 (1993) 920.

    CAS  Google Scholar 

  3. L. L. Hench and J. Wilson, An Introduction to Bioceramics (World Scientific, New Jersey, 1993).

    Google Scholar 

  4. K. A. Hing, S. M. Best, K. E. Tanner, W. Bonfield and P. A. Revell, J. Biomed. Mater. Res. 68A (2004) 187.

    Article  CAS  Google Scholar 

  5. W. Suchanek and M. Yoshimura, J. Mater. Res. 13 (1998) 94.

    CAS  Google Scholar 

  6. W. E. Brown and L. C. Chow, p. 352 in Cements Research Progress, P. W. Brown, editor, (American Ceramic Society, OH, USA, 1986).

    Google Scholar 

  7. M. P. Ginebra, E. Fernandez, E. A. P. De Maeyer, R. M. H. Verbeeck, M. G. Boltong, J. Ginebra, F. C. M. Driessens and J. A. Planell, J. Dent. Res. 76 (1997) 905.

    CAS  Google Scholar 

  8. B. R. Constantz, B. M. Barr, I. C. Ison, M. T. Fulmer, J. Baker, L. McKinney, S. B. Goodman, S. Gunasekaren, D. C. Delaney, J. Ross and R. D. Poser, J. Biomed. Mater. Res. (Appl. Biomater.) 43 (1998) 451.

    Article  CAS  Google Scholar 

  9. D. Knaack, M. E. P. Goad, M. Aiolova, C. Rey, A. Tofighi, P. Chakravarthy and D. D. Lee, J. Biomed. Mater. Res. (Appl. Biomater.) 43 (1998) 399.

    Article  CAS  Google Scholar 

  10. Y. Miyamoto, K. Ishikawa, M. Takechi, T. Toh, T. Yuasa, M. Nagayama and K. Suzuki, J. Biomed. Mater. Res. (Appl. Biomater.) 48 (1999) 36.

    Article  CAS  Google Scholar 

  11. J. E. Barralet, T. Gaunt, A. J. Wright, I. R. Gibson and J. C. Knowles, J. Biomed. Mater. Res. (Appl. Biomater.) 63 (2002) 1.

    Article  CAS  Google Scholar 

  12. A. Yokoyama, S. Yamamoto, T. Kawasaki, T. Kohgo and M. Nakasu, Biomaterials 23 (2002) 1091.

    Article  CAS  Google Scholar 

  13. A. Gisep, R. Wieling, M. Bohner, S. Matter, E. Schneider and B. Rahn, J. Biomed. Mater. Res. 66 (2003) 532.

    Article  CAS  Google Scholar 

  14. A. Ehara, K. Ogata, S. Imazato, S. Ebisu, T. Nakano and Y. Umakoshi, Biomaterials 24 (2003) 831.

    Article  CAS  Google Scholar 

  15. T. Yuasa, Y. Miyamoto, K. Ishikawa, M. Takechi, Y. Momota, S. Tatehara and M. Nagayama, Biomaterials, 25 (2004) 1159.

    Article  CAS  Google Scholar 

  16. D. Apelt, F. Theiss, A. O. El-Warrak, K. Zlinszky, R. Bettschart-Wolfisberger, M. Bohner, S. Matter, J. A. Auer and B. von Rechenberg, Biomaterials, 25 (2004) 1439.

    Article  CAS  Google Scholar 

  17. C. D. Friedman, P. D. Costantino, K. Jones, L. C. Chow, H. J. Pelzer and G. A. Sisson, Arch. Otolaryngol. Head Neck Surg. 117 (1991) 385.

    CAS  Google Scholar 

  18. P. D. Costantino, C. D. Friedman, K. Jones, L. C. Chow and G. A. Sisson, Plast. Reconstr. Surg. 90 (1992) 174.

    Article  CAS  Google Scholar 

  19. M. L. Shindo, P. D. Contantino, C. D. Friedman and L. C. Chow, Arch. Otolaryngol. Head Neck Surg. 119 (1993) 185.

    CAS  Google Scholar 

  20. C. D. Friedman, P. D. Costantino, S. Takagi and L. C. Chow, J. Biomed. Mater. Res. (Appl. Biomater.) 43 (1998) 428.

    Article  CAS  Google Scholar 

  21. L. C. Chow, Mat. Res. Symp. Proc. 599 (2000) 27.

    CAS  Google Scholar 

  22. S. Takagi and L. C. Chow, J. Mater. Sci.: Mater. Med. 12 (2001) 135.

    Article  CAS  Google Scholar 

  23. H. H. K. Xu, J. B. Quinn, S. Takagi, L. C. Chow and F. C. Eichmiller, J. Biomed. Mater. Res. 57 (2001) 457.

    Article  CAS  Google Scholar 

  24. Y. Machida, T. Nagai, M. Abe and T. Sannan, Drug. Dis. Deliv. 1 (1986) 119.

    CAS  Google Scholar 

  25. R. A. A. Muzzarelli, G. Biagini, M. Bellardini, L. Simonelli, C. Castaldini and G. Fraatto, Biomaterials 14 (1993) 39.

    Article  CAS  Google Scholar 

  26. R. A. A. Muzzarelli, p. 87 in Chitin and Chitosan and G. Skjak-Brak, T. Anthonsen, P. Sandford, editors, (Elsevier Applied Sci., NY, 1989).

    Google Scholar 

  27. S. Takagi, L. C. Chow, S. Hirayama and F. C. Eichmiller, Dent. Mater. 19 (2003) 797.

    Article  CAS  Google Scholar 

  28. H. H. K. Xu, S. Takagi, J. B. Quinn and L. C. Chow, J. Biomed. Mater. Res. 68A (2004) 725.

    Article  CAS  Google Scholar 

  29. H. H. K. Xu, J. B. Quinn, S. Takagi and L. C. Chow, J. Dent. Res. 81 (2002) 219.

    Article  CAS  Google Scholar 

  30. The Versailles Project on Advanced Materials and Standards (VAMAS) and The European Structural Integrity Society (ESIS). Fracture toughness of ceramics using the SEVNB method; round robin. Swiss Federal Laboratories for Materials Testing and Research (1999).

  31. H. H. K. Xu, J. B. Quinn and A. A. Giuseppetti, J. Dent. Res. 83 (2004) 930.

    CAS  Google Scholar 

  32. Materials Safety Data Sheet, Rita Corp., Woodstock, IL, USA, updated 2003.

  33. Y. Fukase, E. D. Eanes, S. Takagi, L. C. Chow and W. E. Brown, J. Dent. Res. 69 (1990) 1852.

    CAS  Google Scholar 

  34. K. Ishikawa, Y. Miyamoto, M. Takechi, T. Toh, M. Kon, M. Nagayama and K. Asaoka, J. Biomed. Mater. Res. 36 (1997) 393.

    Article  CAS  Google Scholar 

  35. C. J. Damien and J. R. Parsons, J. Appl. Biomater. 2 (1991) 187.

    Article  CAS  Google Scholar 

  36. K. O’Kelly, D. Tancred, B. McCormack and A. Carr, J. Mater. Sci.: Mater. Med. 7 (1996) 207.

    Article  CAS  Google Scholar 

  37. E. C. Shors and R. E. Holmes, p. 181 in L. L. Hench and J. Wilson, editors, An introduction to bioceramics (World Scientific, New Jersey, 1993).

    Google Scholar 

  38. R. M. Pilliar, M. J. Filiaggi, J. D. Wells, M. D. Grynpas and R. A. Kandel, Biomaterials, 22 (2001) 963.

    Article  CAS  Google Scholar 

  39. N. Tamai, A. Myoui, T. Tomita, T. Nakase, J. Tanaka, T. Ochi and H. Yoshikawa, J. Biomed. Mater. Res. 59 (2002) 110.

    Article  CAS  Google Scholar 

  40. E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka and Y. Kuboki, J. Biochem. 121 (1997) 317.

    CAS  Google Scholar 

  41. E. Damien, K. Hing, S. Saeed and P. A. Revell, J. Biomed. Mater. Res. 66 (2003) 241.

    Article  CAS  Google Scholar 

  42. H. H. K. Xu and C. G. Simon, J. Orthopedic Res. 22 (2004) 535.

    Article  CAS  Google Scholar 

  43. D. M. Liu, Ceram. Intl. 23 (1997) 135.

    Article  CAS  Google Scholar 

  44. K. A. Hing, S. M. Best and W. Bonfield, J. Mater. Sci.: Mater. Med. 10 (1999) 135.

    Article  CAS  Google Scholar 

  45. L. M. Rodrguez-Lorenzo, M. Vallet-Reg, J. M. F. Ferreira, M. P. Ginebra, C. Aparicio and J. A. Planell, J. Biomed. Mater. Res. 60 (2002) 159.

    Article  CAS  Google Scholar 

  46. K. Ishikawa and K. Asaoka, J. Biomed. Mater. Res. 29 (1995) 1537.

    Article  CAS  Google Scholar 

  47. L. J. Gibson, J. Biomech. 18 (1985) 317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hockin H. K. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Xu, H.H.K., Takagi, S. et al. In-situ hardening hydroxyapatite-based scaffold for bone repair. J Mater Sci: Mater Med 17, 437–445 (2006). https://doi.org/10.1007/s10856-006-8471-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-8471-z

Keywords

Navigation