Skip to main content
Log in

Optical indices and transport scattering coefficient of pyrolytic boron nitride: a natural thermal barrier coating for solar shields

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Absorption and scattering properties of pyrolytic boron nitride (pBN) have been characterized by infrared spectroscopy. The strong dielectric anisotropy predicted by first principles calculations is confirmed by measurements performed on a highly oriented pBN sample. Optical properties of textured samples elaborated by chemical vapor deposition were identified from normal hemispherical reflectance and transmittance spectra by applying modified two-flux and four-flux transport models. It is also shown that coating carbon–carbon composites used to build solar shields with a pBN layer having an optimal thickness could improve the protection performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Selvakumar N, Barshilia HC (2012) Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications. Sol Energ Mat Sol C 98:1–23

    Article  Google Scholar 

  2. Golosnoy IO, Cipitria A, Clyne TW (2009) Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: a review of recent work. J Therm Spray Technol 18:809–821

    Article  Google Scholar 

  3. Wang L, Habibi MH, Eldridge JI et al (2014) Infrared radiative properties of plasma-sprayed BaZrO3 coatings. J Eur Ceram Soc 34:3941–3949

    Article  Google Scholar 

  4. Balat-Pichelin M, Eck J, Heurtault S, Glénat H (2014) Experimental study of pyrolytic boron nitride at high temperature with and without proton and VUV irradiations. Appl Surf Sci 314:415–425

    Article  Google Scholar 

  5. Brodu E, Balat-Pichelin M, De Sousa Meneses D et al (2015) Reducing the temperature of a C/C composite heat shield for solar probe missions with an optically selective semi-transparent pyrolytic boron nitride (pBN) coating. Carbon 82:39–50

    Article  Google Scholar 

  6. De Sousa Meneses D, Brun JF, Echegut P et al (2004) Contribution of semi-quantum dielectric function models to the analysis of infrared spectra. Appl Spectrosc 58:969–974

    Article  Google Scholar 

  7. Sacadura J-F (2011) Thermal radiative properties of complex media: theoretical prediction versus experimental identification. Heat Transfer Eng 32:754–770

    Article  Google Scholar 

  8. Dombrovsky LA, Randrianalisoa JH, Lipinski W et al (2011) Approximate analytical solution to normal emittance of semi-transparent layer of an absorbing, scattering, and refracting medium. J Quant Spectrosc Radiat Transfer 112:1987–1994

    Article  Google Scholar 

  9. Dombrovsky LA (2012) The use of transport approximation and diffusion-based models in radiative transfer calculations. Comput Therm Sci 4:297–315

    Article  Google Scholar 

  10. Randrianalisoa J, Baillis D, Pilon L (2006) Improved inverse method for radiative characteristics of closed-cell absorbing porous media. J Thermophys Heat Transfer 20:871–883

    Article  Google Scholar 

  11. Dombrovsky LA, Tagne HK, Baillis D et al (2007) Near-infrared radiative properties of porous zirconia ceramics. Infrared Phys Technol 51:44–53

    Article  Google Scholar 

  12. Wang L, Eldridge JI, Guo SM (2014) Comparison of different models for the determination of the absorption and scattering coefficients of thermal barrier coatings. Acta Mater 64:402–410

    Article  Google Scholar 

  13. Geick R, Perry CH, Rupprecht G (1966) Normal modes in hexagonal boron nitride. Phys Rev 146:543–547

    Article  Google Scholar 

  14. Hoffman DM, Doll GL, Eklund PC (1984) Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV. Phys Rev B 30:6051–6056

    Article  Google Scholar 

  15. Schubert M, Rheinlander B, Franke E et al (1997) Infrared optical properties of mixed-phase thin films studied by spectroscopic ellipsometry using boron nitride as an example. Phys Rev B 56:13306–13313

    Article  Google Scholar 

  16. Ben el Mekki M, Mestres N, Pascual J et al (1999) Infrared and Raman analysis of plasma CVD boron nitride thin films. Diamond Relat Mater 8:398–401

    Article  Google Scholar 

  17. Xu Y-N, Ching WY (1991) Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys Rev B 44:7787–7798

    Article  Google Scholar 

  18. Ohba N, Miwa K, Nagasako N et al (2001) First-principles study on structural, dielectric, and dynamical properties for three BN polytypes. Phys Rev B 63:115207–115209

    Article  Google Scholar 

  19. Serrano J, Bosak A, Arenal R et al (2007) Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and Ab initio calculations. Phys Rev Lett 98:095503–095504

    Article  Google Scholar 

  20. Yu WJ, Lau WM, Chan SP, Liu ZF et al (2003) Ab initio study of phase transformations in boron nitride. Phys Rev B 67:014108–014109

    Article  Google Scholar 

  21. Cai Y, Zhang L, Zeng Q, Cheng L, Xu Y (2007) Infrared reflectance spectrum of BN calculated from first principles. Solid State Commun 141:262–266

    Article  Google Scholar 

  22. Hamdi I, Meskini N (2010) Ab initio study of the structural, elastic, vibrational and thermodynamic properties of the hexagonal boron nitride: performance of LDA and GGA. Phys B 405:2785–2794

    Article  Google Scholar 

  23. Manara J, Caps R, Ebert H-P et al (2002) Infrared optical properties of semitransparent pyrolytic boron nitride (pBN). High Temp High Press 34:65–72

    Article  Google Scholar 

  24. Manara J, Keller M, Kraus D et al (2008) Determining the transmittance and emittance of transparent and semitransparent materials at elevated temperatures. In: Proceedings of the 5th European Thermal-Sciences Conference

  25. Moore AW (1969) Compression annealing of pyrolytic boron nitride. Nature 221:1133–1134

    Article  Google Scholar 

  26. Dupleix A, De Sousa Meneses D, Hughes M et al (2013) Mid-infrared absorption properties of green wood. Wood Sci Technol 47:1231–1241

    Article  Google Scholar 

  27. Pease RS (1952) An X-ray study of boron nitride. Acta Crystallogr 5:356–361

    Article  Google Scholar 

  28. Zhang D, Cherkaev E, Lamoureux MP (2011) Stieltjes representation of the 3D Bruggeman effective medium and Padé approximation. Appl Math Comput 217:7092–7107

    Article  Google Scholar 

  29. Andersson SK, Ribbing CG (1994) Light extinction by bulk voids and surface irregularities in ceramic materials. Phys Rev B 49:11336–11343

    Article  Google Scholar 

  30. Nemanich RJ, Solin SA, Martin RM (1981) Light scattering study of boron nitride microcrystals. Phys Rev B 23:6348–6356

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Emanuel Veron for performing X-ray measurements on the pBN sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingos De Sousa Meneses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Sousa Meneses, D., Balat-Pichelin, M., Rozenbaum, O. et al. Optical indices and transport scattering coefficient of pyrolytic boron nitride: a natural thermal barrier coating for solar shields. J Mater Sci 51, 4660–4669 (2016). https://doi.org/10.1007/s10853-016-9781-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9781-2

Keywords

Navigation