Skip to main content
Log in

Electron doping and stability enhancement of doped graphene using a transparent polar dielectric film

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

LiF is a transparent polar dielectric with the highest band gap among known insulators. The introduction of a LiF/graphene stacked structure provides two significant advantages: mobility enhancement and the stability of the Fermi-level-modulated (doped) state without transmittance loss. The former arises from the increased screening of charged impurities by the high-dielectric environment of LiF, and the latter is due to the self-passivation effect on electron doping achieved by surface dipole interaction originating from high polarizability of LiF. Unlike unstable doping methods based on molecular adsorption or chemical bonding, the doping induced by a highly polar dielectric interface maintains stability and can be reliable method, which is compatible with the Si process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pang S, Hernandez Y, Feng X, Müllen K (2011) Graphene as transparent electrode material for organic electronics. Adv Mater 23(25):2779–2795. doi:10.1002/adma.201100304

    Article  Google Scholar 

  2. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363. doi:10.1021/nl902623y

    Article  Google Scholar 

  3. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928):768–771. doi:10.1126/science.1170335

    Article  Google Scholar 

  4. Song SM, Bong JH, Cho BJ (2014) Work function tuning of metal/graphene stack electrode. Appl Phys Lett 104(8):083512. doi:10.1063/1.4866337

    Article  Google Scholar 

  5. Park J, Lee WH, Huh S, Sim SH, Kim SB, Cho K, Hong BH, Kim KS (2011) Work-function engineering of graphene electrodes by self-assembled monolayers for high-performance organic field-effect transistors. J Phys Chem Lett 2(8):841–845. doi:10.1021/jz200265w

    Article  Google Scholar 

  6. Shi Y, Kim KK, Reina A, Hofmann M, Li L-J, Kong J (2010) Work function engineering of graphene electrode via chemical doping. ACS Nano 4(5):2689–2694. doi:10.1021/nn1005478

    Article  Google Scholar 

  7. Lin Y-J, Zeng J-J (2013) Tuning the work function of graphene by ultraviolet irradiation. Appl Phys Lett 102(18):183120. doi:10.1063/1.4804289

    Article  Google Scholar 

  8. Garg R, Dutta N, Choudhury N (2014) Work function engineering of graphene. Nanomaterials 4(2):267–300

    Article  Google Scholar 

  9. Zheng L, Cheng X, Cao D, Wang Z, Xia C, Yu Y, Shen D (2014) Property transformation of graphene with Al2O3 films deposited directly by atomic layer deposition. Appl Phys Lett 104(2):023112. doi:10.1063/1.4861861

    Article  Google Scholar 

  10. Adam S, Hwang EH, Galitski VM, Das Sarma S (2007) A self-consistent theory for graphene transport. Proc Natl Acad Sci 104(47):18392–18397. doi:10.1073/pnas.0704772104

    Article  Google Scholar 

  11. Lee B, Park S-Y, Kim H-C, Cho K, Vogel EM, Kim MJ, Wallace RM, Kim J (2008) Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. Appl Phys Lett 92(20):203102–203103

    Article  Google Scholar 

  12. Fallahazad B, Kim S, Colombo L, Tutuc E (2010) Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric. Appl Phys Lett 97(12):123105

    Article  Google Scholar 

  13. Fallahazad B, Lee K, Lian G, Kim S, Corbet CM, Ferrer DA, Colombo L, Tutuc E (2012) Scaling of Al2O3 dielectric for graphene field-effect transistors. Appl Phys Lett 100(9):093112–093114

    Article  Google Scholar 

  14. Fischetti MV, Neumayer DA, Cartier EA (2001) Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-κ insulator: the role of remote phonon scattering. J Appl Phys 90(9):4587–4608. doi:10.1063/1.1405826

    Article  Google Scholar 

  15. Andeen C, Fontanella J, Schuele D (1970) Low-frequency dielectric constant of LiF, NaF, NaCl, NaBr, KCl, and KBr by the method of substitution. Phys Rev B 2(12):5068–5073

    Article  Google Scholar 

  16. Klocek P (1991) Handbook of infrared optical materials. Marcel Dekker, New York, p 291

    Google Scholar 

  17. Wong KW, Wang YM, Lee ST, Kwok RWM (1999) Negative electron affinity on polycrystalline diamond surface induced by lithium fluoride deposition. Diam Relat Mater 8(10):1885–1890. doi:10.1016/S0925-9635(99)00149-1

    Article  Google Scholar 

  18. Schlaf R, Parkinson BA, Lee PA, Nebesny KW, Jabbour G, Kippelen B, Peyghambarian N, Armstrong NR (1998) Photoemission spectroscopy of LiF coated Al and Pt electrodes. J Appl Phys 84(12):6729–6736. doi:10.1063/1.369000

    Article  Google Scholar 

  19. Schulz L, Nuccio L, Willis M, Desai P, Shakya P, Kreouzis T, Malik VK, Bernhard C, Pratt FL, Morley NA, Suter A, Nieuwenhuys GJ, Prokscha T, Morenzoni E, Gillin WP, Drew AJ (2011) Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nat Mater 10(1):39–44

    Article  Google Scholar 

  20. Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nano 3(4):210–215. http://www.nature.com/nnano/journal/v3/n4/suppinfo/nnano.2008.67_S1.html

  21. Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91(23):233108. doi:10.1063/1.2818692

    Article  Google Scholar 

  22. Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson CW, McDonnell S, Colombo L, Vogel EM, Ruoff RS, Wallace RM (2011) The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett 99(12):122108

    Article  Google Scholar 

  23. Lin Y-C, Lu C-C, Yeh C-H, Jin C, Suenaga K, Chiu P-W (2011) Graphene annealing: how clean can it be? Nano Lett 12(1):414–419

    Article  Google Scholar 

  24. Das Sarma S, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83(2):407–470

    Article  Google Scholar 

  25. Ambrosi A, Pumera M (2014) The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 6(1):472–476. doi:10.1039/C3NR05230C

    Article  Google Scholar 

  26. Kang J, Shin D, Bae S, Hong BH (2012) Graphene transfer: key for applications. Nanoscale 4(18):5527–5537. doi:10.1039/C2NR31317K

    Article  Google Scholar 

  27. Suk JW, Lee WH, Lee J, Chou H, Piner RD, Hao Y, Akinwande D, Ruoff RS (2013) Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett 13(4):1462–1467. doi:10.1021/nl304420b

    Google Scholar 

  28. Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y (2011) Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett 11(2):767–771. doi:10.1021/nl103977d

    Article  Google Scholar 

  29. Ahn Y, Kim H, Kim Y-H, Yi Y, Kim S-I (2013) Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene. Appl Phys Lett 102(9):091602

    Article  Google Scholar 

  30. Streetman BG, Banarjee S (2000) Solid state electronic devices, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  31. Nagashio K, Nishimura T, Kita K, Toriumi A (2010) Contact resistivity and current flow path at metal/graphene contact. Appl Phys Lett 97(14):143514. doi:10.1063/1.3491804

    Article  Google Scholar 

  32. Venugopal A, Colombo L, Vogel EM (2010) Contact resistance in few and multilayer graphene devices. Appl Phys Lett 96(1):013512. doi:10.1063/1.3290248

    Article  Google Scholar 

  33. Farmer DB, Golizadeh-Mojarad R, Perebeinos V, Lin Y-M, Tulevski GS, Tsang JC, Avouris P (2008) Chemical doping and electron–hole conduction asymmetry in graphene devices. Nano Lett 9(1):388–392. doi:10.1021/nl803214a

    Article  Google Scholar 

  34. Huard B, Stander N, Sulpizio JA, Goldhaber-Gordon D (2008) Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys Rev B 78(12):121402

    Article  Google Scholar 

  35. Nouchi R, Shiraishi M, Suzuki Y (2008) Transfer characteristics in graphene field-effect transistors with Co contacts. Appl Phys Lett 93(15):152104. doi:10.1063/1.2998396

    Article  Google Scholar 

  36. Chen JH, Jang C, Adam S, Fuhrer MS, Williams ED, Ishigami M (2008) Charged-impurity scattering in graphene. Nat Phys 4(5):377–381. http://www.nature.com/nphys/journal/v4/n5/suppinfo/nphys935_S1.html

  37. Hwang EH, Adam S, Das Sarma S (2007) Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98(18):186806

    Article  Google Scholar 

  38. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nano 5(10):722–726. http://www.nature.com/nnano/journal/v5/n10/abs/nnano.2010.172.html#supplementary-information

  39. Jang C, Adam S, Chen J-H, Williams E, Sarma SD, Fuhrer M (2008) Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short-and long-range potential scattering. Phys Rev Lett 101(14):146805

    Article  Google Scholar 

  40. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21(10):3335–3345. doi:10.1039/c0jm02922j

    Article  Google Scholar 

  41. Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N, Geim A (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Trade, Industry and Energy through Technology Innovation Program (Grant No. 10044410) and Basic Science Research Program through the National Research Foundation of Korea (NRF) (Grant No. 2013R1A1A3007993) and (2010-0020207) funded by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunae Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S., Du, H., Kim, T. et al. Electron doping and stability enhancement of doped graphene using a transparent polar dielectric film. J Mater Sci 51, 748–755 (2016). https://doi.org/10.1007/s10853-015-9397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9397-y

Keywords

Navigation