Skip to main content
Log in

Diffraction-line shifts and broadenings in continuously and discontinuously coarsening precipitate-matrix systems: coarsening of initially coherent nitride precipitates in a ferrite matrix

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The initial precipitation of misfitting particles can be accompanied by elastic accommodation of the precipitate/matrix misfit leading to considerable matrix lattice dilatation/contraction and variable lattice microstrain. In this stage, the entire assembly of matrix and precipitate particles, as a whole, can diffract coherently. Upon aging of the system, relaxation of the accommodated misfit can occur by continuous and/or discontinuous coarsening of the precipitates. These processes are associated with distinctly different, characteristic diffraction phenomena, also involving a transition from coherent to incoherent diffraction of precipitates and matrix. For the case of, initially fully coherent, alloying element nitrides in a homogeneously nitrided ferrite matrix, these effects have been identified and analyzed, thus allowing tracing of misfit-relaxation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Note that in both Fe–Mo and Fe–Cr–Mo alloys, actually a discontinuous precipitation (DP) reaction, from the cubic CP-nitride to the hexagonal DP-nitride, occurs. Still, as in the case of a DC reaction, the DP reaction is associated with (full) misfit-strain relaxation in the DP regions, leading to the same effects in the XRD patterns as for a DC reaction.

  2. During this effective aging treatment, the nitriding conditions were maintained in order to avoid the possible dissolution of nitrides and the escape of nitrogen from the specimens.

References

  1. Mittemeijer EJ, Welzel U (2013) Modern diffraction methods. Wiley, Weinheim

    Google Scholar 

  2. Guinier AJ (1963) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. Freeman, San Francisco

    Google Scholar 

  3. Dyson DJ, Institute of Materials Minerals and Mining (2004) X-ray and electron diffraction studies in materials science. Maney, London

    Google Scholar 

  4. Cahn RW (2005) Concise encyclopedia of materials characterization. Elsevier, Amsterdam

    Google Scholar 

  5. Ladd M, Palmer R (2013) Structure determination by x-ray crystallography analysis by x-rays and neutrons celebrating the centenary of x-ray crystallography. Springer, New York

    Book  Google Scholar 

  6. Daniel V, Lipson H (1943) An X-ray study of the dissociation of an alloy of copper, iron and nickel. Proc R Soc Lond Ser A 181:368–378

    Article  Google Scholar 

  7. Zwell L, Danko AW (1975) Applications of X-ray-diffraction methods to quantitative chemical-analysis. Appl Spectrosc Rev 9:167–221

    Article  Google Scholar 

  8. Ledbetter HM, Austin MW (1987) Internal strain (stress) in an SiC-Al particle-reinforced composite—an X-ray-diffraction study. Mater Sci Eng 89:53–61

    Article  Google Scholar 

  9. Luo J, Tao K, Yin H, Du Y (1996) Studies on quantitative X-ray diffraction characterization of phase depth profiles. Rev Sci Instrum 67:2859–2862

    Article  Google Scholar 

  10. Epp J, Surm H, Kessler O, Hirsch T (2007) In situ X-ray phase analysis and computer simulation of carbide dissolution of ball bearing steel at different austenitizing temperatures. Acta Mater 55:5959–5967

    Article  Google Scholar 

  11. Somers MAJ, Lankreijer RM, Mittemeijer EJ (1989) Excess nitrogen in the ferrite matrix of nitrided binary iron-based alloys. Philos Mag A 59:353–378

    Article  Google Scholar 

  12. Akhlaghi M, Steiner T, Meka SR, Leineweber A, Mittemeijer EJ (2015) Lattice-parameter change induced by accommodation of precipitates/matrix misfit; misfitting nitrides in ferrite. Acta Mater. doi:10.1016/j.actamat.2015.07.017

  13. Tirry W, Schryvers D (2005) Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi. Acta Mater 53:1041–1049

    Article  Google Scholar 

  14. van Berkum JGM, Delhez R, de Keijser TH, Mittemeijer EJ (1996) Diffraction-line broadening due to strain fields in materials; Fundamental aspects and methods of analysis. Acta Crystallogr A 52:730–747

    Article  Google Scholar 

  15. Mittemeijer EJ (2013) Fundamentals of nitriding and nitrocarburizing. In: Dossett J, Totten GE (eds) ASM Handbook, vol 4A., Steel heat treating fundamentals and processes ASM International, Materials Park, pp 619–646

    Google Scholar 

  16. Sennour M, Jacq C, Esnouf C (2004) Mechanical and microstructural investigations of nitrided Fe-Cr layers. J Mater Sci 39:4533–4541. doi:10.1023/B:JMSC.0000034147.58126.f8

    Article  Google Scholar 

  17. Quek SS, Xiang Y, Srolovitz DJ (2011) Loss of interface coherency around a misfitting spherical inclusion. Acta Mater 59:5398–5410

    Article  Google Scholar 

  18. Mittemeijer EJ (2010) Fundamentals of materials science. Springer, Berlin

    Google Scholar 

  19. Porter DA, Easterling KE (1982) Phase transformations in metals and alloys. Van Nostrand Reinhold, London

    Google Scholar 

  20. Christian JW (2002) The theory of transformations in metals and alloys. Pergamon Press, Oxford

    Google Scholar 

  21. Vives Díaz NE, Hosmani SS, Schacherl RE, Mittemeijer EJ (2008) Nitride precipitation and coarsening in Fe–2.23at.%V alloys: XRD and (HR)TEM study of coherent and incoherent diffraction effects caused by misfitting nitride precipitates in a ferrite matrix. Acta Mater 56:4137–4149

    Article  Google Scholar 

  22. Meka SR, Bischoff E, Rheingans B, Mittemeijer EJ (2013) Octapod-shaped, nanosized, amorphous precipitates in a crystalline ferrite matrix. Philos Mag Lett 93:238–245

    Article  Google Scholar 

  23. Geslin PA, Appolaire B, Finel A (2014) Investigation of coherency loss by prismatic punching with a nonlinear elastic model. Acta Mater 71:80–88

    Article  Google Scholar 

  24. Williams DB, Butler EP (1981) Grain boundary discontinuous precipitation reactions. Int Mater Rev 26:153–183

    Article  Google Scholar 

  25. Findik F (1998) Discontinuous (cellular) precipitation. J Mater Sci Lett 17:79–83

    Article  Google Scholar 

  26. Manna I, Pabi SK, Gust W (2001) Discontinuous reactions in solids. Int Mater Rev 46:53–91

    Article  Google Scholar 

  27. Hekker PM, Rozendaal HCF, Mittemeijer EJ (1985) Excess nitrogen and discontinuous precipitation in nitrided iron-chromium alloys. J Mater Sci 20:718–729. doi:10.1007/BF01026547

    Article  Google Scholar 

  28. Schacherl RE, Graat P, Mittemeijer EJ (2002) Gaseous nitriding of iron-chromium alloys. Zeitschrift für Metallkunde 93:468–477

    Article  Google Scholar 

  29. Miyamoto G, Yonemoto A, Tanaka Y, Furuhara T, Maki T (2006) Microstructure in a plasma-nitrided Fe–18mass%Cr alloy. Acta Mater 54:4771–4779

    Article  Google Scholar 

  30. Sennour M, Jouneau P, Esnouf C (2004) TEM and EBSD investigation of continuous and discontinuous precipitation of CrN in nitrided pure Fe-Cr alloys. J Mater Sci 9:4521–4531. doi:10.1023/B:JMSC.0000034146.64444.80

    Article  Google Scholar 

  31. Hosmani SS, Schacherl RE, Mittemeijer EJ (2005) Nitriding behavior of Fe–4 wt%V and Fe–2 wt%V alloys. Acta Mater 53:2069–2079

    Article  Google Scholar 

  32. Selg H, Bischoff E, Meka SR, Schacherl RE, Waldenmaier T, Mittemeijer EJ (2013) Molybdenum-nitride precipitation in recrystallized and cold-rolled Fe-1 at. pct mo alloy. Metall Mater Trans A 44A:4059–4070

    Article  Google Scholar 

  33. Steiner T, Meka SR, Rheingans B, Bischoff E, Waldenmaier T, Yeli G, Martin TL, Bagot PAJ, Moody MP, Mittemeijer EJ (2015) Microstructural development of Fe-1 at.%Cr-1 at.%Mo alloy upon nitriding; crystal structure and composition of ternary nitrides (in preparation)

  34. Kurz SJB, Meka SR, Schell N, Ecker W, Keckes J, Mittemeijer EJ (2015) Residual stress and microstructure depth gradients in nitrided iron-based alloys revealed by dynamical cross-sectional transmission X-ray microdiffraction. Acta Mater 87:100–110

    Article  Google Scholar 

  35. Lehrer E (1930) Ueber das Eisen-Wasserstoff-Ammoniak-Gleichgewicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 36:383–392

    Google Scholar 

  36. Delhez R, Mittemeijer EJ (1975) An improved alpha-2 elimination. J Appl Crystallogr 8:609–611

    Article  Google Scholar 

  37. Sutton AL, Hume-Rothery W (1955) The lattice spacings of solid solutions of titanium, vanadium, chromium, manganese, cobalt and nickel in alpha-iron. Philos Mag 46:1295–1309

    Article  Google Scholar 

  38. Dijkstra LJ (1949) Precipitation phenomena in the solid solutions of nitrogen and carbon in alpha-iron below the eutectoid temperature. Trans Am Inst Min Metall Eng 185:252260

    Google Scholar 

  39. Jack KH (1950) Results of further X-Ray structural investigations of the iron carbon and iron nitrogen systems and of related interstitial alloys. Acta Crystallogr 3:392–394

    Article  Google Scholar 

  40. Mittemeijer EJ, Vogels ABP, Van der Schaaf PJ (1980) Aging at room-temperature of nitrided alpha-iron. Scr Metall Mater 14:411–416

    Article  Google Scholar 

  41. Mittemeijer EJ (1981) Lattice distortions in nitrided iron and steel. Haerterei-Technische Mitteilungen 36:57–67

    Google Scholar 

  42. Ferguson P, Jack KH (1983) Quenched-aging and strain-aging of nitrogen-ferrite. Proc Heat Treat 81:158–163

    Google Scholar 

  43. Mittemeijer EJ, Van Gent A (1984) Unusual lattice-parameters in 2-phase systems—the case of aged nitrogen-ferrite. Scr Metall Mater 18:825–828

    Article  Google Scholar 

  44. Kuzel R, He B, Houska C (1997) Characterization of severe matrix distortions during phase separation from the redistribution of diffracted intensities. J Mater Sci 32:2451–2467. doi:10.1023/A:1018521627350

    Article  Google Scholar 

  45. Rickerby D, Henderson S, Hendry A, Jack KH (1986) Overview no. 51 Structure and thermochemistry of nitrided iron-titanium alloys. Acta Metall Mater 34:1687–1699

    Article  Google Scholar 

  46. Stein J, Schacherl RE, Jung MS, Meka SR, Rheingans B, Mittemeijer EJ (2013) Solubility of nitrogen in ferrite; the Fe-N phase diagram. Int J Mater Res 104:1053–1065

    Article  Google Scholar 

  47. Wriedt HA, Zwell L (1962) Lattice dilation of alpha-iron by nitrogen. Trans Metall Soc AIME 224:1242–1246

    Google Scholar 

  48. Baker RG, Nutting J (1959) The tempering of a Cr-Mo-V-W and a Mo-V steel. Iron and Steel Institute Special Report 64:1–22

Download references

Acknowledgements

The authors would like to thank Dr. E. Bischoff for the TEM investigations, Mr. W.-D. Lang for preparation of the TEM specimens, and Mr. P. Kress for assistance with the nitriding experiments (all with Max Planck Institute for Intelligent Systems) and Prof. A. Leineweber (now with TU Bergakademie Freiberg) for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Meka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steiner, T., Akhlaghi, M., Meka, S.R. et al. Diffraction-line shifts and broadenings in continuously and discontinuously coarsening precipitate-matrix systems: coarsening of initially coherent nitride precipitates in a ferrite matrix. J Mater Sci 50, 7075–7086 (2015). https://doi.org/10.1007/s10853-015-9262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9262-z

Keywords

Navigation