Skip to main content
Log in

Solid-state processing of oxidation-resistant molybdenum borosilicide composites for ultra-high-temperature applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The high-temperature capabilities of multi-phase composites based on Mo5Si3Bx are examined after solid-state processing and pulsed laser deposition (PLD) coating fabrication approaches. These composites are prepared by mechanical alloying of elemental powders and densified by vacuum hot pressing, which is a scalable processing approach. Chemical analyses of the hot-pressed compacts reveal a consistent 15–22 percent loss of boron, which is primarily due to the high-temperature hot-pressing step. Composites possessing sufficient amounts of boron are evaluated by thermogravimetric studies in temperatures up to 1650 °C in air. One composition demonstrates oxidative stability after long-term (100 h) isothermal conditions, as well as thermal cycling to simulate solar-thermal operation. Hot-pressed samples of composites consisting of Mo5Si3Bx + MoSi2 + MoB are also employed as deposition targets for PLD trials. X-ray diffraction analysis of the resulting films indicates the absence of long-range crystallographic order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Piatkowski N, Wieckert C, Weimer AW, Steinfeld A (2011) Solar-driven gasification of carbonaceous feedstock: a review. Energy Environ Sci 4:73–82

    Article  Google Scholar 

  2. Perkins C, Weimer AW (2009) Solar-thermal production of renewable hydrogen. AlChE J 55:286–293

    Article  Google Scholar 

  3. Trainham JA, Newman J, Bonino CA, Hoertz PG, Akunuri N (2012) Whither solar fuels? Curr Opin Chem Eng 1:204–210

    Article  Google Scholar 

  4. Hall A, Ambrosini A, Ho C (2012) Solar selective coatings for concentrating solar power central receivers. Adv Mater Process 170:28–32

    Google Scholar 

  5. Flamant G, Gauthier D, Benoit H, Sans JL, Garcia R, Boissiere B, Ansart R, Hemati M (2013) Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: on-sun proof of concept. Chem Eng Sci 102:567–576

    Article  Google Scholar 

  6. Siegel NP, Ho CK, Khalsa SS, Kolb GJ (2010) Development and evaluation of a prototype solid particle receiver: on-sun testing and model validation. J Sol Energy Eng 132:1–8

    Google Scholar 

  7. Hellmann JR, Eatough MO, Rlava PF, Mahoney AR (1987) Evaluation of Spherical Ceramic Particles for Solar Thermal Transfer Media. Report No. SAND86-0981, Sandia National Laboratory

  8. Brady MP, Gleeson B, Wright IG (2000) Alloy design strategies for promoting protective oxide-scale formation. JOM-J Min Met Mat S 52:16–21

    Article  Google Scholar 

  9. Radcliff A (1987) Factors influencing gas turbine use and performance. Mater Sci Technol 3:554–561

    Google Scholar 

  10. Sharif A (2010) High-temperature oxidation of MoSi2. J Mater Sci 45:865–870

    Article  Google Scholar 

  11. Akinc M, Meyer MK, Kramer MJ, Thom AJ, Huebsch JJ, Cook B (1999) Boron-doped molybdenum silicides for structural applications. Mat Sci Eng 261:16–23

    Article  Google Scholar 

  12. Meyer M, Kramer M, Akinc M (1996) Boron-doped molybdenum silicides. Adv Mater 8:85–88

    Article  Google Scholar 

  13. Lemberg JA, Ritchie RO (2012) Mo–Si–B alloys for ultrahigh-temperature structural applications. Adv Mater 24:3445–3480

    Article  Google Scholar 

  14. Lu-Steffes OJ, Sakidja R, Bero J, Perepezko JH (2012) Multicomponent coating for enhanced oxidation resistance of tungsten. Surf Coat Tech 207:614–619

    Article  Google Scholar 

  15. Perepezko JH, Sakidja R (2013) Environmental resistance of Mo-Si-B alloys and coatings. Oxid Met 80:207–218

    Article  Google Scholar 

  16. Bewlay BP, Jackson MR, Zhao JC, Subramanian PR (2003) A review of very-high-temperature Nb-silicide-based composites. Metall Mater Trans A 34A:2043–2052

    Article  Google Scholar 

  17. Bewlay BP, Jackson MR, Zhao JC, Subramanian PR, Mendiratta MG, Lewandowski JJ (2003) Ultrahigh-temperature Nb-silicide-based composites. MRS Bull 28:646–653

    Article  Google Scholar 

  18. Cook BA, Harringa JL, Lewis TL, Russell AM (2004) Processing studies and selected properties of ultra-hard AlMgB14. J Adv Mater 36:56–63

    Google Scholar 

  19. Cook BA, Harringa JL, Russell AM, Batzer SA (2003) A proof-of-concept study of the use of complex borides for disassembly of decommissioned nuclear reactor containment vessels. Mach Sci Technol 7:157–165

    Article  Google Scholar 

  20. Majumdar S, Burk S, Schliephake D, Kruger M, Christ HJ, Heilmaier M (2013) A study on effect of reactive and rare earth element additions on the oxidation behavior of Mo–Si–B system. Oxid Met 80:219–230

    Article  Google Scholar 

  21. Nieh TG, Wang JG, Liu CT (2001) Deformation of a multiphase Mo–9.4Si–13.8B alloy at elevated temperatures. Intermetallics 9:73–79

    Article  Google Scholar 

  22. Thom AJ, Summers E, Akinc M (2002) Oxidation behavior of extruded Mo5Si3Bx–MoSi2–MoB intermetallics from 600–1600 °C. Intermetallics 10:555–570

    Article  Google Scholar 

  23. Higdon C, “Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems,” (2010), OSTI ID: 1001197 DOE/GO16054-1, Final Technical Report, USDOE Award No. DE-FG36-06GO16054

  24. Tian Y, Womack M, Molian P, Lo CCH, Anderegg JW, Russell AM (2002) Microstructure and nanomechanical properties of Al–Mg–B–Ti films synthesized by pulsed laser deposition. Thin Solid Films 418:129–135

    Article  Google Scholar 

  25. Perepezko JH, Sakidja R (2010) Oxidation-resistant coatings for ultra-high-temperature refractory Mo-based alloys. JOM 62:13–19

    Article  Google Scholar 

  26. Perepezko JH, Sakidja R (2013) Extended functionality of environmentally-resistant Mo-Si-B-based coatings. JOM 65:307–317

    Article  Google Scholar 

  27. Choe H, Schneibel JH, Ritchie RO (2003) On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (25 °C to 1300 °C). Metall Mater Trans A 34:225–239

    Article  Google Scholar 

  28. Wang Y, Wang DZ, Yan JH (2014) Preparation and characterization of MoSi2/MoB composite coating on Mo substrate. J Alloys Compd 589:384–388

    Article  Google Scholar 

  29. Yoshimi K, Nakatani S, Hanada S, Ko S, Park Y (2002) Synthesis and high temperature oxidation of Mo–Si–B–O pseudo in situ composites. Sci Technol Adv Mat 3:181–192

    Article  Google Scholar 

  30. Mkrtchyan AY (2012) Optical properties of the pulsed-laser deposited amorphous films of germanium. Int J Mod Phys Conf Ser 15:219–223

    Article  Google Scholar 

  31. Fan HY, Reid SA (2003) Phase transformations in pulsed laser deposited nanocrystalline tin oxide thin films. Chem Mater 15:564–567

    Article  Google Scholar 

  32. Madhukar S, Aggarwal S, Dhote AM, Ramesh R, Samavedam SB, Choopun S, Sharma RP (1999) Pulsed laser-ablation deposition of thin films of molybdenum silicide and its properties as a conducting barrier for ferroelectric random-access memory technology. J Mater Res 14:940–947

    Article  Google Scholar 

  33. Tian Y, Constant A, Lo CCH, Anderegg JW, Russell AM, Snyder JE, Molian P (2003) Microstructure evolution of Al–Mg–B thin films by thermal annealing. J Vac Sci Technol A 21:1055–1063

    Article  Google Scholar 

  34. Yoon JK, Kim GH, Byun JY, Kim JS, Choi CS (2001) Simultaneous growth mechanism of intermediate silicides in MoSi2/Mo system. Surf Coat Tech 148:129–135

    Article  Google Scholar 

  35. Hayashi T, Ito K, Takamoto M, Tanaka K (2005) The effect of Nb and W alloying additions to the thermal expansion anisotropy and elastic properties of Mo5Si3. Metall Mater Trans A 36A:533–538

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the contribution of Judith Stuart at RTI International for the mechanical alloying of the Mo–Si–B composites and of Joel Harringa at Ames Laboratory for hot pressing of the mechanical-alloyed powders. The ICP chemical analysis work of Frank Webber at RTI and thermal gravimetric analyses at SETARAM Application Laboratory (Caluire, France) are also gratefully acknowledged. This work was funded by the Research Triangle Solar Fuels Institute, Research Triangle Park, North Carolina, USA. The Research Triangle Solar Fuels Institute (www.solarfuels.org) is a consortium consisting of Duke University, North Carolina State University, RTI International, and the University of North Carolina at Chapel Hill. A portion of this work was also supported by the U.S. Department of Energy, ARPA-E Award No. DE-AR0000414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Cook.

Additional information

B.A. Cook and C.A. Bonino contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, B.A., Bonino, C.A. & Trainham, J.A. Solid-state processing of oxidation-resistant molybdenum borosilicide composites for ultra-high-temperature applications. J Mater Sci 49, 7750–7759 (2014). https://doi.org/10.1007/s10853-014-8485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8485-8

Keywords

Navigation