Skip to main content
Log in

Structure–electrical resistivity relationship of N-doped multi-walled carbon nanotubes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nitrogen-doped multi-walled carbon nanotubes (N-MWCNT) were synthesized by means of catalytic chemical vapor deposition technique using acetonitrile as carbon source material and ferrocene as catalyst. The structure of the synthesized N-MWCNT was characterized by means of microscopic (SEM, HRTEM) as well as spectroscopic (FTIR, Raman) techniques. Furthermore, the specific resistivity and the electrochemical properties of N-MWCNT were investigated and compared with those of pristine MWCNT. The results are discussed in terms of structural differences between pristine MWCNT and N-MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, New York

    Google Scholar 

  3. Harris PJF (1999) Carbon Nanotubes and Related Structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Trans SJ, Dekker C (2000) Nature 404:834

    Article  Google Scholar 

  5. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622

    Article  CAS  Google Scholar 

  6. Terrones M, Jorio A, Endo M, Rao AR, Kim YA, Hayashi T, Terrones H, Charlier JC, Dresselhaus G, Dresselhaus MS (2004) Mater Today 7:30

    Article  CAS  Google Scholar 

  7. Czerw R, Terrones M, Charlier JC, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan PM, Blau W, Ruhle M, Carroll DL (2001) Nano Lett 1:457

    Article  CAS  Google Scholar 

  8. Nevidomskyy A, Csanyi G, Payne M (2003) Phys Rev Lett 91:105502

    Article  Google Scholar 

  9. Sun CL, Chen LC, Su MC, Hong LS, Chyan O, Hsu CY, Chen KH, Chang TF, Chang L (2005) Chem Mater 17:3749

    Article  CAS  Google Scholar 

  10. Nemes-Incze P, Daroczi N, Sarkozi Z, Koos AA, Kertesz K, Tiprigan O, Horvath ZE, Darabont AL, Biro LP (2007) J Optoelectron Adv Mater 9:1525

    CAS  Google Scholar 

  11. van Dommele S, Romero-Izquirdo A, Brydson R, de Jong KP, Bitter JH (2008) Carbon 46:138

    Article  Google Scholar 

  12. Li XL, Liu YQ, Fu L, Cao LC, Wei DC, Wang Y (2008) Carbon 46:255

    Article  CAS  Google Scholar 

  13. Bulusheva LG, Okotrub AV, Kudashov AG, Shubin YuV, Shlyakhova EV, Yudanov NF, Pazhetnov EM, Boronin AI, Vyalikh DV (2008) Carbon 46:864

    Article  CAS  Google Scholar 

  14. Koos AA, Dowling M, Jurkschat K, Crossley A, Grobert N (2009) Carbon 47:30

    Article  CAS  Google Scholar 

  15. Lim SH, Elim HI, Gao XY, Wee ATS, Ji W, Lee JY, Lin J (2006) Phys Rev B 73:045402

    Article  Google Scholar 

  16. Enouz S, Bantignies JL, Babaa MR, Alvarez L, Parent P, Le Normand F, Stephan O, Poncharal P, Loiseau A, Doyle B (2007) J Nanosci Nanotechnol 7:1

    Article  Google Scholar 

  17. Hellgren N, Guo J, Luo Y, Sathe C, Agui A, Kashtanov S, Nordgren J, Agren H, Sundgren JE (2005) Thin Solid Films 471:19

    Article  CAS  Google Scholar 

  18. Choi HC, Bae SY, Jang WS, Park J, Song HJS, Shin HJ, Jung H, Ahn JP (2005) J Phys Chem B 109:1683

    Article  CAS  Google Scholar 

  19. Wang X, Liu Y, Zhu D, Zhang L, Ma H, Yao N, Zhang B (2002) J Phys Chem B 106:2186

    Article  CAS  Google Scholar 

  20. Lim SH, Li R, Ji W, Lin J (2007) Phys Rev B 76:195406

    Article  Google Scholar 

  21. Tran NH, Wilson MA, Milev AS, Bartlett JR, Lamb RN, Martin D, Kannangara GSK (2009) Adv Colloid Interface Sci 145:23

    Article  CAS  Google Scholar 

  22. Koos AA, Dillon F, Obraztsova EK, Crossley A, Grobert N (2010) Carbon 48:3033

    Article  CAS  Google Scholar 

  23. Deck CP, Vecchio KS (2005) J Phys Chem B 109:12353

    Article  CAS  Google Scholar 

  24. Cao A, Xu C, Liang J, Wu D, Wu B (2001) Chem Phys Lett 344:13

    Article  CAS  Google Scholar 

  25. Kudashov AG, Okotrub AV, Bulusheva LG, Asanov IP, Shubin YuV, Yudanov NF, Yudanova LI, Danilovich VS, Abrosimov OG (2004) J Phys Chem B 108:9048

    Article  CAS  Google Scholar 

  26. Ibitoye SA, Afonja AA (2008) J Miner Mater Character Eng 7:203

    Google Scholar 

  27. Qiu Y, Gao L (2003) Chem Commun 2378

  28. Zhao XA, Ong CW, Tsang YC, Wong YW, Chan PW, Choy CL (1995) Appl Phys Lett 66:2652

    Article  CAS  Google Scholar 

  29. Yap YK, Kida S, Aoyama T, Mori Y, Sasaki T (1998) Appl Phys Lett 73:915

    Article  CAS  Google Scholar 

  30. Lai SH, Chen YL, Chan LH, Pan YM, Liu XW, Shih HC (2003) Thin Solid Films 444:38

    Article  CAS  Google Scholar 

  31. Ritter U, Scharff P, Siegmund C, Dmytrenko OP, Kulish NP, YuI Prylutskyy, Belyi NM, Gubanov VA, Komarova LA, Lizunova SV, Poroshin VG, Shlapatskaya VV, Bernas H (2006) Carbon 44:2694

    Article  CAS  Google Scholar 

  32. Bulusheva LG, Okotrub AV, Kinloch IA, Asanov IP, Kurenya AG, Kudashov AG, Chen X, Song H (2008) Phys Status Solidi b 245:1971

    Article  CAS  Google Scholar 

  33. Nemanish RJ, Solin SA (1979) Phys Rev B 20:392

    Article  Google Scholar 

  34. Choi S, Park KH, Lee S, Koh KH (2002) J Appl Phys 92:4007

    Article  CAS  Google Scholar 

  35. Khabashesku VN, Zimmerman JL, Margrave JL (2000) Chem Mater 12:3264

    Article  CAS  Google Scholar 

  36. Venezuela P, Lazzeri M, Mauri F (2011) Phys Rev B 84:035433

    Google Scholar 

  37. Dong JB, Keun SK, Young SP, Suh EK, An KH, Moon J-M, SCh Lim, Park SH, Jeong YH, Lee YH (2001) Phys Rev B 64:233401

    Article  Google Scholar 

  38. Ovsienko IV, Len TA, Matzui LYu, Prylutskyy YuI, Ritter U, Scharff P, Le Normand F, Eklund P (2007) Mol Cryst Liq Cryst 468:289

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by STCU Grant N4908.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ritter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, U., Tsierkezos, N.G., Prylutskyy, Y.I. et al. Structure–electrical resistivity relationship of N-doped multi-walled carbon nanotubes. J Mater Sci 47, 2390–2395 (2012). https://doi.org/10.1007/s10853-011-6059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6059-6

Keywords

Navigation