Skip to main content
Log in

Glass reactive sintering as an alternative route for the synthesis of NZP glass–ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The NZP-type crystal structure allows a large number of ionic substitutions which leads to ceramics with adjustable thermal expansion properties or interesting ionic conductivity. However, NZP is difficult to fabricate into monoliths because it requires both high temperatures and long sintering times. An alternative low temperature route to obtain a tungsten (IV) and tin (IV) containing NZP crystalline phase uses a process of glass reactive sintering of a phosphate glass. Using a microwave oven, a glass with the appropriate composition in the NaPO3–Sn(II)O–W(VI)O3 ternary diagram is prepared by a conventional melting and casting technique. After crushing, the glass powder is pressed at room temperature. The green pellet is cured during various times at temperatures where glass reactive sintering takes place. From XRD and DTA experiments, we have shown that different parameters influence the achievement of NZP phase. Consequently, specific conditions, such as (i) initial glass composition, (ii) equimolar quantities of SnO and WO3, (iii) glass particle size lower than 100 μm, and (iv) curing conducted under air, are required to obtain a glass–ceramic with a single crystalline phase with the NZP-type crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hagman LO, Kierkegaard P (1968) Acta Chem Scand 22:1822

    Article  CAS  Google Scholar 

  2. Subba Rao GV, Varadaraju UV, Thomas KA, Sivasankar B (1987) J Solid State Chem 70:101

    Article  Google Scholar 

  3. Leclaire A, Borel MM, Grandin A, Raveau B (1989) Acta Cryst C 45:699

    Article  Google Scholar 

  4. Goodenough JB, Hong HY-P, Kafalas JA (1976) Mater Res Bull 11:203

    Article  CAS  Google Scholar 

  5. Oikonomou P, Dedeloudis C, Stournaras CJ, Ftikos C (2007) J Eur Ceram Soc 27:1253

    Article  CAS  Google Scholar 

  6. Breval E, McKinstry HA, Agrawal DK (2000) J Mater Sci 35:3359. doi:10.1023/A:1004828917908

    Article  CAS  Google Scholar 

  7. Buvaneswari G, Varadaraju UV (2000) Mater Res Bull 35:1313

    Article  CAS  Google Scholar 

  8. Roy R, Vance ER, Alamo J (1982) Mater Res Bull 17:585

    Article  CAS  Google Scholar 

  9. Yamamoto K, Kasuga T, Abe Y (1997) J Am Ceram Soc 80:822

    Article  CAS  Google Scholar 

  10. Zhou M, Ahmad A (2007) Sensors Actuators B Chem 122:419

    Article  Google Scholar 

  11. Lisdat F, Miura N, Yamazoe N (1996) Sensors Actuators B Chem 30:195

    Article  Google Scholar 

  12. Rodrigo JL, Alamo J (1991) Mater Res Bull 26:475

    Article  CAS  Google Scholar 

  13. Breval E, Harshé G, Agrawal DK, Limaye SY (1995) J Mater Sci Lett 14:728

    CAS  Google Scholar 

  14. Vaidhyanathan B, Agrawal DK, Roy R (2004) J Am Ceram Soc 87:834

    Article  CAS  Google Scholar 

  15. Vaidhyanathan B, Ganguli M, Rao KJ (1994) J Solid State Chem 113:448

    Article  CAS  Google Scholar 

  16. Ghussn L, Martinelli JR (2004) J Mater Sci 39:1371. doi:10.1023/B:JMSC.0000013899.75724.e1

    Article  CAS  Google Scholar 

  17. Chenu S, Lebullenger R, Rocherullé J (2010) J Mater Sci 45:6505. doi:10.1007/s10853-010-4739-2

    Article  CAS  Google Scholar 

  18. Shannon RD (1976) Acta Cryst A32:751

    CAS  Google Scholar 

  19. Chenu S, Rocherullé J, Lebullenger R, Merdrignac O, Cheviré F, Tessier F, Oudadesse H (2010) J Non Cryst Solid 356:87

    Article  CAS  Google Scholar 

  20. Muñoz F, Pascual L, Durán A, Rocherullé J, Marchand R (2006) J Eur Ceram Soc 26:1455

    Article  Google Scholar 

  21. Ray CS, Day DE (1990) J Am Ceram Soc 73:439

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Rocherullé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenu, S., Lebullenger, R., Bénard-Rocherullé, P. et al. Glass reactive sintering as an alternative route for the synthesis of NZP glass–ceramics. J Mater Sci 47, 486–492 (2012). https://doi.org/10.1007/s10853-011-5824-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5824-x

Keywords

Navigation