Skip to main content
Log in

Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hollow polymer microspheres with different polarity and functional group for the shell layer containing gold nanocolloid cores adsorbed on the inner surface were prepared by selective removal of sandwiched silica layer from the corresponding gold/silica/polydivinylbenzene (Au/SiO2/PDVB), Au/SiO2/poly(ethyleneglycol dimethacrylate) (Au/SiO2/PEGDMA), and Au/SiO2/poly(ethyleneglycol dimethacrylate-co-methacrylic acid) (Au/SiO2/P(EGDMA-co-MAA) tri-layer microspheres, respectively. The tri-layer microspheres were synthesized by distillation precipitation polymerizations of divinylbenzene (DVB), ethyleneglycol dimethacrylate (EGDMA), EGDMA together with methacrylic acid (MAA) in presence of 3-(methacryloxy)propyltrimethoxysilane (MPS)-modified gold/silica (Au/SiO2) core–shell particles as seeds, which were prepared by coating of a layer of silica onto the surface of Au nanocolloids with the aid of polyvinylpyrrolidone (PVP) via a modified Stöber method. The catalytic property and stability as a microreactor of the hollow polymer microspheres with Au nanocolloid cores adsorbed on the inner surface were studied by the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AnP) with sodium borohydride (NaBH4) as reductant. Transmission electron microscopy (TEM) and Fourier transform infrared spectra (FT-IR) were used for characterizing the morphology and structure of the resultant microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Daniel MC, Astruc D (2004) Chem Rev 104:293

    Article  CAS  PubMed  Google Scholar 

  2. Yang XL, Deng ZL, Liu HF (1999) J Mol Catal A Chem 144:123

    Article  CAS  Google Scholar 

  3. Zuo XB, Liu HF (2001) Catal Lett 12:127

    Google Scholar 

  4. Yang XL, Liu HF, Zhong H (1999) J Mol Catal A Chem 147:55

    Article  CAS  Google Scholar 

  5. Zhang Q, Ge JP, Yin YD (2008) Nano Lett 8:2867

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Arnal PM, Comotti M, Schüth F (2006) Angew Chem Int Ed 45:8224

    Article  CAS  Google Scholar 

  7. Kamata K, Lu Y, Xia YN (2003) J Am Chem Soc 125:2384

    Article  CAS  PubMed  Google Scholar 

  8. Jiang P, Bertone JF, Colvin VL (2001) Science 291:453

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Ding J, Liu GJ (1998) J Phys Chem B 102:6107

    Article  CAS  Google Scholar 

  10. Shchukin DG, Shutava T, Shchukina E, Sukhorukov GB, Lvov YM (2004) Chem Mater 16:3446

    Article  CAS  Google Scholar 

  11. Kim SW, Kim M, Lee WY, Hyeon T (2002) J Am Chem Soc 124:7642

    Article  CAS  PubMed  Google Scholar 

  12. Xu X, Asher SA (2004) J Am Chem Soc 126:7940

    Article  CAS  PubMed  Google Scholar 

  13. KimM SohnK, Na HB, Hyeon T (2002) Nano Lett 2:1383

    Article  ADS  Google Scholar 

  14. Liu GY, Ji HF, Yang XL, Wang YM (2008) Langmuir 24:1019

    Article  CAS  PubMed  Google Scholar 

  15. Cheng DM, Zhou XD, Xia HB, Chan HSO (2005) Chem Mater 17:3578

    Article  CAS  Google Scholar 

  16. Lee KT, Jung YS, Oh SM (2003) J Am Chem Soc 125:5652

    Article  CAS  PubMed  Google Scholar 

  17. Zhang K, Zhang X, Chen H, Chen X, Zhang C, Zhang J, Yang B (2004) Langmuir 20:11312

    Article  CAS  PubMed  Google Scholar 

  18. Hao LY, Zhu CL, Jiang WQ, Chen CN, Hu Y, Chen ZY (2004) J Mater Chem 14:2929

    Article  CAS  Google Scholar 

  19. Cheng T, Pang JB, Tan G, He J, McPherson GL, Lu YF, John V, Zhan J (2007) Langmuir 23:5143

    Article  Google Scholar 

  20. Liu W, Yang XL, He XG (2009) Chin J Polym Sci 27:275

    Article  CAS  Google Scholar 

  21. Graf C, Dirk LJ, Vossen AI, Blaaderen AV (2003) Langmuir 19:6693

    Article  CAS  Google Scholar 

  22. Liz-Marzan LM, Giersig M, Mulvaney P (1996) Langmuir 12:4329

    Article  CAS  Google Scholar 

  23. Luna-Xavier JL, Guyot A, Bourgeat-Lami E (2002) J Colloid Interface Sci 250:82

    Article  CAS  PubMed  Google Scholar 

  24. Liu GY, Zhang H, Yang XL, Wang YM (2007) Polymer 48:5895

    Google Scholar 

  25. Bai F, Yang XL, Huang WQ (2004) Macromolecules 37:9746

    Article  CAS  ADS  Google Scholar 

  26. Qi DL, Bai F, Yang XL, Huang WQ (2005) Eur Polym J 41:2320

    Article  CAS  Google Scholar 

  27. Bai F, Yang XL, Huang WQ (2006) Eur Polym J 42:2088

    Article  CAS  Google Scholar 

  28. Propkov NI, Gritskova IA, Charkasov VR, Chalykh AE (1996) Russ Chem Rev 45:167

    Article  ADS  Google Scholar 

  29. Ge JP, Huynh T, Hu YX, Yin YD (2008) Nano Lett 8:931

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Foundation of China with project No.: 20874049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlin Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Ji, H., Zhang, X. et al. Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor. J Mater Sci 45, 3981–3989 (2010). https://doi.org/10.1007/s10853-010-4470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4470-z

Keywords

Navigation