Skip to main content

Advertisement

Log in

A Diffeomorphic Mapping Based Characterization of Temporal Sequences: Application to the Pelvic Organ Dynamics Assessment

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In various imaging applications, shape variations are studied in order to define the transformations involved or to quantify a distance between each change performed. Regardless of the way the shapes may be extracted, with 2D imaging, shapes concern essentially curves or sets of points depending on the available data. Wether time is related to the shape variations or not, one can consider a set of shapes as the observation of the temporal evolution of an initial shape. In this context, we present a methodology aiming at quantifying the evolution of a set of contours without landmarks. Our characterization of temporal sequences is based on the large deformation diffeomorphic mapping paradigm and the shape representation based on currents, which allow both to propose a shape metric and a curve matching of the timed variations. Then, mechanics related features are extracted as they are physically meaningful and quite painless understandable.

In this paper, the process is applied within the scope of a pelviperineology study. Available clinical diagnoses are combined with statistical analysis to show the soundness of the approach. Indeed, pelvic floor disorders are characterized by abnormal organ descents and deformations during abdominal strains. As they are soft-tissue organs, the pelvic organs have no fixed landmarks, in addition to wide shape differences. Routinely used, 2D sagittal mri sequences are segmented to provide the contour sets from which the characterization should highlight pelvic organ behaviors. We believe that a statistical analysis of these behaviors on several dynamic mri sequences could help to a better understanding of the pelvic floor pathophysiology. The methodology is applied on a dataset of 30 patients with different clinical diagnoses. Some promising results are presented, where the pathology detection capability of the deformation features is assessed, and the principal organ dynamics modes are computed, through an inter-patient analysis. Also, an organ parcellation is proposed thanks to the local deformation analysis, it identifies spatial references which are clinically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ashburner, J., Friston, K.: Voxel-based morphometry—the methods. NeuroImage 11(6), 805–821 (2000)

    Article  Google Scholar 

  2. Auzias, G., Colliot, O., Glaunes, J., Perrot, M., Mangin, J.F., Trouvé, A., Baillet, S.: Diffeomorphic brain registration under exhaustive sulcal constraints. IEEE Trans. Med. Imaging 30(6), 1214–1227 (2011)

    Article  Google Scholar 

  3. Ball, G., Hall, D.: A clustering technique for summarizing multivariate data. Behav. Sci. 12(2), 153–155 (1967)

    Article  Google Scholar 

  4. Beg, M., Khan, A.: Computing an average anatomical atlas using LDDMM and geodesic shooting. In: IEEE International Symposium on Biomedical Imageing, ISBI 2006, pp. 1116–1119 (2006)

    Chapter  Google Scholar 

  5. Bellemare, M.E., Pirró, N., Marsac, L., Durieux, O.: Toward the simulation of the strain of female pelvic organs. In: IEEE EMBS Annual International Conference, pp. 2756–2759 (2007)

    Google Scholar 

  6. Bookstein, F.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Chiang, M.C., Dutton, R.A., Hayashi, K.M., Lopez, O.L., Aizenstein, H.J., Toga, A.W., Becker, J.T., Thompson, P.M.: 3d pattern of brain atrophy in hiv/aids visualized using tensor-based morphometry. NeuroImage 34(1), 44–60 (2007)

    Article  Google Scholar 

  8. Constantinou, C., Hvistendahl, G., Ryhammer, A., Nagel, L., Djurhuus, J.: Determining the displacement of the pelvic floor and pelvic organs during voluntary contractions using magnetic resonance imageing in younger and older women. BJU Int. 90(4), 408–414 (2002)

    Article  Google Scholar 

  9. Cootes, T., Taylor, C.: A mixture model for representing shape variation. Image Vis. Comput. 17(8), 567–573 (1999)

    Article  Google Scholar 

  10. Cox, T., Cox, M.: Multidimensional Scaling. Chapman & Hall, New York (2001)

    MATH  Google Scholar 

  11. Crum, W., Hartkens, T., Hill, D.: Non-rigid image registration: theory and practice. Br. J. Radiol. 77(2), S140 (2004)

    Article  Google Scholar 

  12. Dryden, I., Mardia, K.: Statistical Shape Analysis, vol. 4. Wiley, Chichester (1998)

    MATH  Google Scholar 

  13. Dupuis, P., Grenander, U., Miller, M.I.: Lefschetz: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56(3), 587 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI 2009, pp. 297–304 (2009)

    Chapter  Google Scholar 

  15. Durrleman, S., Pennec, X., Trouvé, A., Thompson, P., Ayache, N.: Inferring brain variability from diffeomorphic deformations of currents: an integrative approach. Med. Image Anal. 12(5), 626–637 (2008)

    Article  Google Scholar 

  16. Everitt, B., Landau, S., Leese, M.: Cluster Analysis. Arnold, Sevenoaks (2001)

    MATH  Google Scholar 

  17. Fielding, J.R.: Mr imageing of pelvic floor relaxation. Radiol. Clin. North Am. 41(4), 747–756 (2003)

    Article  Google Scholar 

  18. Fox, N., Cousens, S., Scahill, R., Harvey, R., Rossor, M.: Using serial registered brain magnetic resonance imageing to measure disease progression in alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch. Neurol. 57(3), 339 (2000)

    Article  Google Scholar 

  19. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Glaunes, J., Qiu, A., Miller, M., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80(3), 317–336 (2008)

    Article  Google Scholar 

  21. Golland, P., Grimson, W., Kikinis, R.: Statistical shape analysis using fixed topology skeletons: Corpus callosum study. In: Information Processing in Medical Imageing, pp. 382–387. Springer, Berlin (1999)

    Chapter  Google Scholar 

  22. Harders, M., Székely, G.: Using statistical shape analysis for the determination of uterine deformation states during hydrometra. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI 2007, pp. 858–865 (2007)

    Chapter  Google Scholar 

  23. Hernandez, M., Bossa, M.N., Olmos, S.: Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. Int. J. Comput. Vis. 85(3), 291–306 (2009)

    Article  Google Scholar 

  24. Hurley, J., Cattell, R.: The procrustes program: producing direct rotation to test a hypothesized factor structure. Behav. Sci. 7(2), 258–262 (1962)

    Article  Google Scholar 

  25. Jian, B., Vemuri, B.: Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633–1645 (2011)

    Article  Google Scholar 

  26. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, S151–S160 (2004)

    Article  Google Scholar 

  27. Katanoda, K., Matsuda, Y., Sugishita, M.: A spatio-temporal regression model for the analysis of functional mri data. NeuroImage 17(3), 1415–1428 (2002)

    Article  Google Scholar 

  28. Lawrence, J., Lukacz, E., Nager, C., Hsu, J., Luber, K.: Prevalence and co-occurrence of pelvic floor disorders in community-dwelling women. Obstet. Gynecol. 111(3), 678 (2008)

    Article  Google Scholar 

  29. Lebedev, L., Cloud, M., Eremeyev, V.: Tensor Analysis with Applications in Mechanics. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  30. Lepore, N., Brun, C., Chou, Y., Chiang, M., Dutton, R., Hayashi, K., Luders, E., Lopez, O., Aizenstein, H., Toga, A., et al.: Generalized tensor-based morphometry of hiv/aids using multivariate statistics on deformation tensors. IEEE Trans. Med. Imaging 27(1), 129–141 (2008)

    Article  Google Scholar 

  31. Lohmann, G.: Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Math. Geol. 15(6), 659–672 (1983)

    Article  Google Scholar 

  32. Maher, C., Baessler, K., Glazener, C., Adams, E., Hagen, S.: Surgical management of pelvic organ prolapse in women. Cochrane Database Syst. Rev. 18, 4 (2004)

    Google Scholar 

  33. Maintz, J., Viergever, M.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)

    Article  Google Scholar 

  34. Marsland, S., Twining, C.J.: Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images. IEEE Trans. Med. Imaging 23, 1006–1020 (2004)

    Article  Google Scholar 

  35. Noblet, V., Heinrich, C., Heitz, F., Armspach, J.: 3-d deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization. IEEE Trans. Image Process. 14(5), 553–566 (2005)

    Article  MathSciNet  Google Scholar 

  36. Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. Med. Imaging 22(6), 773–776 (2003)

    Article  Google Scholar 

  37. Rahim, M., Bellemare, M.E., Pirró, N., Bulot, R.: A shape descriptors comparison for organs deformation sequence characterization in mri sequences. In: IEEE International Conference on Image Processing, ICIP 2009, pp. 1069–1072 (2009)

    Chapter  Google Scholar 

  38. Seynaeve, R., Billiet, I., Vossaert, P., Verleyen, P., Steegmans, A.: MR imageing of the pelvic floor. JBR-BTR 89(4), 182–189 (2006)

    Google Scholar 

  39. Singh, N., Fletcher, P., Preston, J., Ha, L., King, R., Marron, J., Wiener, M., Joshi, S.: Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010, pp. 529–537 (2010)

    Chapter  Google Scholar 

  40. Slieker-ten Hove, M., Pool-Goudzwaard, A., Eijkemans, M., Steegers-Theunissen, R., Burger, C., Vierhout, M.: Prediction model and prognostic index to estimate clinically relevant pelvic organ prolapse in a general female population. Int. Urogynecol. J. 20, 1013–1021 (2009)

    Article  Google Scholar 

  41. Thomaz, C., Duran, F., Busatto, G., Gillies, D., Rueckert, D.: Multivariate statistical differences of mri samples of the human brain. J. Math. Imaging Vis. 29, 95–106 (2007)

    Article  MathSciNet  Google Scholar 

  42. Weber, A.M., Richter, H.E.: Pelvic organ prolapse. Obstet. Gynecol. 106(3), 615–634 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. J. Lefèvre for the fruitful discussions about the lddmm method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rahim.

Additional information

This work is part of the MoDyPe project (http://modype.lsis.org) supported by the French National Research Agency (ANR) under reference “ANR-09-SYSC-008”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahim, M., Bellemare, ME., Bulot, R. et al. A Diffeomorphic Mapping Based Characterization of Temporal Sequences: Application to the Pelvic Organ Dynamics Assessment. J Math Imaging Vis 47, 151–164 (2013). https://doi.org/10.1007/s10851-012-0391-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0391-6

Keywords

Navigation