Skip to main content
Log in

Improved thermal stability of an organic zeolite by fluorination

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The thermal stability of an organic zeolite material, namely 2,4,6-tris(4-bromo-3,5-difluorphenoxy)-1,3,5-triazin (Br-3,5-DFPOT), was improved by fluorination of 2,4,6-tris(4-bromophenoxy)-1,3,5-triazin (BrPOT). The open pore structure (van der Waals diameter of 10.5 Å) of the modified zeolite was observed up to 110 °C in comparison to 70 °C for BrPOT. Nitrogen sorption at low temperature showed a type I isotherm and derived pore volumes thereof are in agreement with structural data. It was observed here that Br-3,5-DFPOT crystals preserving the open pore structure could only be obtained below a typical size of about 50 μm. The improved thermal stability of the fluorinated system is attributed to an enhancement of the strength of the Br3-synthon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Organic Zeolite: Sozzani, P., Comotti, A., Simonutti, R., Meersmann, T., Logan, J.W., Pines, A.: A porous crystalline molecular solid explored by hyperpolarized Xenon. Angew. Chem. Int. Ed. 39, 2695–2699 (2000); Hertzsch, T., Hulliger, J., Weber, E., Sozzani, P.: In: Atwood, J.L., Steed, J.W. (eds.) Encyclopedia of Supramolecular Chemistry. Marcel Dekker, New York (2004); Soldatov, D.V., Ripmeester, J.A.: Organic zeolites. Stud. Surf. Sci. Catal. 156, 37–54 (2005); Lee, S., Venkataraman, D.: Organic zeolites? Stud. Surf. Sci. Catal. 102, 75–95 (1996); Görbitz, C.H.: An exceptionally stable peptide nanotube system with flexible pores. Acta Cryst. B58, 849–854 (2002); Soldatov, D.V., Moudrakovski, I.L., Ripmeester, J.A.: Organic zeolites: dipeptides as microporous materials. Angew. Chem. Int. Ed. 43, 6308–6311 (2004); Yang, J., Dewal, M.B., Shimizu, L.S.: Self-assembling bisurea macrocycles used as an organic zeolite for a highly stereoselective photodimerization of 2-cyclohexenone. J. Am. Chem. Soc. 128, 8122–8123 (2006)

    Google Scholar 

  2. Smith, J.V.: Origin and structure of zeolites, ACS Monograph 171 (Zeolite Chem. Catal.), 3 (1976); Yamamoto, K., Nohara, Y., Domon, Y., Takahashi, Y., Sakata, Y., Plévert, J., Tatsumi, T.: Organic-inorganic hybrid zeolites with framework organic groups. Chem. Mater. 17, 3913–3920 (2005)

    Google Scholar 

  3. MOF: Kitagawa, S., Kitaura, R., Noro, S.-I.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004); Rosseinsky, M.J.: Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility. Micropor Mesopor Mater. 73, 15–30 (2004); Rowsell, J.L.C., Yaghi, O.M.: Metal-organic frameworks: a new class of porous materials. Micropor Mesopor Mater. 73, 3–14 (2004); Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., Pastré, J.: Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)

    Google Scholar 

  4. Suess, H.I., Hulliger, J.: Organic channel inclusion compound featuring an open pore size of 12 Å. Micropor Mesopor Mater. 78, 23–27 (2005)

    Article  CAS  Google Scholar 

  5. Sozzani, P., Bracco, S., Comotti, A., Feretti, L., Simonutti, R.: Methane and carbon dioxide storage in a porous van der Waals crystal. Angew. Chem. Int. Ed. 44, 1816–1820 (2005)

    Article  CAS  Google Scholar 

  6. Couderc, G., Hertzsch, T., Behrnd, N.-R., Krämer, K., Hulliger, J.: Reversible sorption of nitrogen and xenon gas by the guest-free zeolite tris(o-phenylenedioxy)cyclotriphosphazene (TPP). Micropor Mesopor Mater. 88, 170–175 (2006)

    Article  CAS  Google Scholar 

  7. Stoe & Cie. IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany (2005)

  8. Sheldrick, G.: Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473 (1990)

    CAS  Google Scholar 

  9. Sheldrick, G.: SHELXL-97, program for crystal structure refinement. University of Göttingen, Germany (1997)

    Google Scholar 

  10. Spek, A.: Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 36, 7–13 (2003)

    Article  CAS  Google Scholar 

  11. Reichenbächer, K., Neels, A., Stoeckli-Evans, H., Balasubramaniyan, P., Müller, K., Weber, E., Hulliger, J.: New fluorinated channel-type Host-guest compounds. Cryst. Growth Des. 7, 1399–1405 (2007)

    Article  CAS  Google Scholar 

  12. Brunaeur, S.: The adsorption of gases and vapors, vol. 1. Princeton Uni Press, Princeton (1943)

    Google Scholar 

  13. Dubinin, M.M., Astakhov, V.A.: Description of adsorption equilibriums of vapors on zeolites over wide ranges of temperature and pressure. Adv. Chem. 102, 69–85 (1971)

    Article  CAS  Google Scholar 

  14. Metrangolo, P., Resnati, G.: Halogen bonding: a paradigm in supramolecular chemistry. Chem. Eur. J. 7, 2511–2519 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Swiss SNF 200021-113358/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Hulliger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichenbächer, K., Couderc, G., Neels, A. et al. Improved thermal stability of an organic zeolite by fluorination. J Incl Phenom Macrocycl Chem 61, 127–130 (2008). https://doi.org/10.1007/s10847-007-9404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9404-2

Keywords

Navigation