Skip to main content
Log in

Radiological and hyperfine characterization of soils from the Northeastern region of the Province of Buenos Aires, Argentina

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The activity concentrations of both natural (238U and 232Th chains and 40K) and anthropogenic (137Cs) radionuclides down along the soil profile have been determined in soil samples collected from inland and coastal areas of the La Plata River, located in the Northeastern region of the Province of Buenos Aires, Argentina. These studies were complemented with 57Fe Mössbauer spectroscopy characterization, pH, texture and organic carbon content measurements. From Mössbauer results, the sample compositions differ from one area to the other. Spectra from both soil samples are dominated by the Fe3+  paramagnetic signal. For soil samples from the coastal area, the α-Fe2O3 contribution is lower, Fe3O4 was not detected, and the relative areas of each spectral contribution are nearly constant with depth. For samples from the inland area, the Fe3+  paramagnetic fraction increases up to 82%, mainly at the expense of the magnetically ordered phase. The main observed activity originates from the decay of 40K (540–750 Bq/kg), followed by 238U (60–92 Bq/kg) and 232Th (37–46 Bq/kg) chains. The activity of 235U was in all the cases lower than the detection limit (LD = 0.02 Bq/kg). The only determined anthropogenic nuclide was 137Cs, arising from the fallout of the Southern Hemisphere nuclear weapon tests. Three of the observed differences in the depth distributions can be described by the dispersion-convection model. A correlation between the natural nuclide activities and the Mössbauer relative fractions was found, whereas no correlation was found between the 137Cs profile and the relative fraction of Fe3O4 or with other iron species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cooper, J.R., Randle, K., Sokhi, R.S.: Radioactive Releases in the Environment, Ed. John Wiley & Sons Ltd. The Atrium, Southern Gate, Chichester, West Sussex, England (2003)

  2. UNSCEAR 2008 Report Vol. 1: Sources of ionizing radiation. http://www.unscear.org/unscear/en/publications/2008_1.html (2008)

  3. Cornell, R.M.: Adsorption of cesium on minerals: a review. J. Radioanal. Nucl. Chem. 171, 483–500 (1993)

    Article  Google Scholar 

  4. Sawhney, B.L.: Selective sorption and fixation of cations by clay minerals: a review. Clays Clay Miner. 20, 93–100 (1972)

    Article  Google Scholar 

  5. Bossen, P., Kirchner, G.: Modeling the vertical distribution of radionuclides in soils. Part I: the convection-dispersion equation revisited. J. Environ. Radioact. 73, 127–150 (2004)

    Article  Google Scholar 

  6. Almgren, S., Isaksson, M.: Vertical migration studies of 137Cs from nuclear weapons fallout and the Chernobyl accident. J. Environ. Radioact. 91, 90–102 (2006)

    Article  Google Scholar 

  7. Juri Ayub, J., Velasco, R.H., Rizzotto, M., Quintana, E., Aguiar, J.: 40K, 137Cs and 226Ra soil and plant content in semi-natural grasslands of Central Argentina. In: Paschoa, A.S. (ed.) The Natural Radiation Environment—8th International Symposium. American Institute of Physics 978-0-7354-0559 (2008)

  8. Malanca, A., Gaidolfi, L., Pessina, V., Dallara G.: Distribution of 226Ra, 232Th, and 40K in soils of Rio Grande do Norte (Brazil). J. Environ. Radioact. 30, 55–67 (1996)

    Article  Google Scholar 

  9. Correchel, V., Oliveira Santos Bacchi, O., Reichardt, K., Cereci de Maria I.: Random and systematic spatial variability of 137Cs inventories at references sites in south-central Brazil. Sci. Agric. 62, 173–178 (2005)

    Article  Google Scholar 

  10. Handl, J., Sachase, R., Jakob, D., Michel, R., Evangelista, H., Gonçalves, A.C., de Freitas, A.C.: Accumulation of 137Cs in Brazilian soils and its transfer to plants under different climatic conditions. J. Environ. Radioact. 99, 271–287 (2008)

    Article  Google Scholar 

  11. UNSCEAR 1982 Report: Ionizing radiation: sources and biological effects. http://www.unscear.org/unscear/en/publications/1982.html (1982)

  12. Schuller, P., Ellies, A., Kirchner, G.: Vertical migration of fallout 137Cs in agricultural soils from southern Chile. Sci. Total Environ. 193, 197–205 (1997)

    Article  Google Scholar 

  13. Schuller, P., Voigt, G., Handl, J., Ellies, A., Oliva, L.: Global weapons fallout 137Cs in soils and trasnfer to vegetation in south-central Chile. J. Environ. Radioact. 62, 181–193 (2002)

    Article  Google Scholar 

  14. Schuller, P., Bunzl, K., Voigt, G., Ellies, A., Castillo, A.: Global fallout 137Cs accumulation and vertical migration in selected soils fron south Patagonia, J. Environ. Radioact. 71, 43–60 (2004)

    Article  Google Scholar 

  15. Bujan, A., Santanatoglia, O.J., Chagas, C., Massobrio, M., Castiglioni, M., Yañez, M., Ciallella, H., Fernandez, J.: Preliminary study on the use of the 137Cs method for soil erosion investigation in the pampean region of Argentina. Acta Geol. Hisp. 35, 271–277 (2000)

    Google Scholar 

  16. Bujan, A., Santanatoglia, O.J., Chagas, C., Massobrio, M., Castiglioni, M., Yañez, M., Ciallella, H., Fernandez, J.: Soil erosion evaluation in a small basing though the use of 137Cs technique. Soil Tillage Res. 69, 127–137 (2003)

    Article  Google Scholar 

  17. Garcia Agudo, E.: IAEA-TECDOC-1028 (1998)

  18. Juri Ayub, J., Rizzotto, M., Toso, J., Velasco, H.: 137Cs deposition and vertical migration in soils from Argentina. In: Proc. Int. Conf. Environ. Radioctivity (2007)

  19. IAEA Technical Report Series no. 42. Handbook of Parameter values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments (2010)

  20. De Vido, J.M.: Discurso, Reactivación de la industria nuclear en Argentina (2006)

  21. Carlos Rey, D.F: Reactivación del plan nuclear Argentino. www.pagina12.com.ar (2007)

  22. Instituto de Geomorfología y Suelos. Facultad de ciencias Naturales y Museo, Universidad Nacional de la Plata. Centro de Investigaciones de Suelos y Aguas de Uso Agropecuario. Elaboración y Transferencia de Cartografía Temática e Implementación de un Sistema de Información Geográfica para el Planeamiento (Partido de Berisso) (2005)

  23. Instituto de Geomorfología y Suelos. Facultad de ciencias Naturales y Museo, Universidad Nacional de la Plata. Centro de Investigaciones de Suelos y Aguas de Uso Agropecuario. Análisis ambiental del Partido de La Plata. Aportes a ordenamiento territorial (2006)

  24. Instituto de Geomorfología y Suelos. Facultad de ciencias Naturales y Museo, Universidad Nacional de la Plata. Centro de Investigaciones de Suelos y Aguas de Uso Agropecuario. Suelos del Partido de Berasategui como base para el planeamiento ambiental y ordenamiento territorial (2006)

  25. Perillo Isaac, M.C., Hurley, D., McDonald, R.J., Norman, E.B., Smith, A.R.: A natural calibration source for determining germanium detector efficiencies. Nucl. Instrum. Methods Phys. Res. A 397, 310–316 (1997)

    Article  ADS  Google Scholar 

  26. Lagarec, K., Rancourt, D.G.: Mössbauer Spectral Analysis Software for Windows, Version 1.0. University of Ottawa- Department of Physics (1998)

  27. United Nations Econimic Comission for Europe Convention on long-range Transboundary Air Pollution, Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests Part IIIa Sampling and Analysis of Soil (2006)

  28. Claver, R.: Procedure in Sedimentary Petrology. Wiley Interscience, New York (1971)

    Google Scholar 

  29. Murad, E.: Clays and clay minerals: what can Mössbauer spectroscopy do to help understand them? Hypefine Interact. 117, 39–70 (1998)

    Article  ADS  Google Scholar 

  30. Fabris, J.D., Coey, J.M.D.: Topics em Ciencia do Solo II, Soc. Brasileira de Ciencia do Solo 47–102 (2002)

  31. Paduani, C., Samudio Pérez, C.A., Gobbi, D., Ardisson, J.D.: Mineralogical characterization of iron-rich clayey soils from the middle plateau in the Southern of Brazil. Appl. Clay Sci. 42, 559–562 (2009)

    Article  Google Scholar 

  32. MacCannon, C.A.: Mössbauer Spectroscopy of Minerals in Mineral Physics & Crystallography: Handbook of Physical Constants, pp. 332–347. American Geophysical Union, Washington DC (1995)

    Book  Google Scholar 

  33. Montes, M.L., Taylor, M.A., Mercader, R.C., Siver, F.R., Desimoni J.: Hyperfine and radiological characterization of soils of the province of Buenos Aires, Argentina. J. Phys.: Conf. Series 217, 012058 (2010). doi:10.1088/1742-6596/217/1/012058

  34. Imbellone, P.A., Guichon, B.A., Giménez, J.E.: Latinamercian J. sedimentology and basin analysis 16, 3–18 (2009)

    Google Scholar 

  35. Singh, B.K., Jain, A., Kumar, S., Tomar, B.S., Tomar, R. Manchanda, V.K., Ramanathan, S.: Role of magnetite and humic acid in radionuclide migration in the environment. J. Contam. Hydrol. 106, 144–149 (2009)

    Article  ADS  Google Scholar 

  36. Catallette, H., Dumonceau, J., Ollar, P.: Sorption of cesium, barium and europium on magnetite. J. Contam. Hydrol 35, 151–159 (1998)

    Article  Google Scholar 

  37. Marnier, N., Fromage, F.: Sorption of Cs(I) on magnetite in the presence of silicates. J. Colloid. Interf. Sci. 223, 83–88 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Desimoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes, M.L., Mercader, R.C., Taylor, M.A. et al. Radiological and hyperfine characterization of soils from the Northeastern region of the Province of Buenos Aires, Argentina. Hyperfine Interact 202, 5–16 (2011). https://doi.org/10.1007/s10751-011-0335-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0335-3

Keywords

Navigation