Skip to main content

Advertisement

Log in

Microbial carbon production and transfer across trophic levels is affected by solar UVA and phosphorus

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Processes and environmental factors that alter carbon fixation and fluxes are key to understanding ecosystem function and impacts of global change stressors. We tested the effects of ultraviolet A radiation (UVA) and nutrients on the 14C production of particulate (bacteria, algae and zooplankton size fractions) and dissolved organic carbon. Experiments were carried out in situ on two occasions during the ice-free period of a high mountain lake (Sierra Nevada, Spain). The production of organic carbon was strongly modulated by nutrients and moderately by UVA. While UVA generally reduced primary production, this effect was alleviated by nutrient enrichment. Nutrients had opposite effects to UVA on basal trophic levels by inhibiting primary production and stimulating the bacterial incorporation of algal carbon exudates in the midsummer experiment, and vice versa in the early fall experiment. Also, nutrients had a pronounced effect stimulating particulate carbon in zooplankton only in midsummer when organisms were actively growing. These results suggest that, while UVA effects are restricted to the basal trophic levels of primary producers and bacteria, effects of nutrients transfer up the food web. However, higher carbon accrual in zooplankton during midsummer may not result into higher growth due to inefficient carbon absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • American Public Health Association (APHA), 1992. Standard Methods for the Examination of Water and Wastewater. Port City Press, Pikesville.

    Google Scholar 

  • Alonso-Sáez, L., P. E. Galand, E. O. Casamayor, C. Pedrós-Alió & S. Bertilsson, 2010. High bicarbonate assimilation in the dark by Arctic bacteria. The ISME Journal 4: 1581–1590.

    Article  PubMed  Google Scholar 

  • Bothwell, M. L., D. M. J. Sherbot & C. M. Pollock, 1994. Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science 265: 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Bothwell, M. L., D. Karentz & E. J. Carpenter, 1995. No UVB effect? Nature 374: 601.

    Article  CAS  Google Scholar 

  • Bullejos, F. J., P. Carrillo, M. Villar-Argaiz & J. M. Medina-Sánchez, 2010. Roles of phosphorus and ultraviolet radiation in the strength of phytoplankton-zooplankton coupling in a Mediterranean high mountain lake. Limnology and Oceanography 55: 2549–2562.

    Article  CAS  Google Scholar 

  • Butler, M. & H. G. Dam, 1994. Production rates and characteristics of fecal pellets of the copepod Acartia tonsa under simulated phytoplankton bloom conditions: implications for vertical fluxes. Marine Ecology Progress Series 114: 81–91.

    Article  Google Scholar 

  • Camarero, L. & J. Catalan, 2012. Atmospheric phosphorus deposition may cause lakes to revert from phosphorus limitation back to nitrogen limitation. Nature Communications 3: 1118.

    Article  CAS  PubMed  Google Scholar 

  • Caron, D. A., 2000. Protistan herbivory and bacterivory. In Paul, J. (ed.), Marine Microbiology: Methods in Microbiology. Academic Press, London: 289–315.

    Google Scholar 

  • Carrillo, P., I. Reche, P. Sanchez-Castillo & L. Cruz-Pizarro, 1995. Direct and indirect effects of grazing on the phytoplankton seasonal succession in an oligotrophic lake. Journal of Plankton Research 17: 1363–1379.

    Article  Google Scholar 

  • Carrillo, P., J. M. Medina-Sánchez & M. Villar-Argaiz, 2002. The interaction of phytoplankton and bacteria in a high mountain lake: importance of the spectral composition of solar radiation. Limnology and Oceanography 47: 1294–1306.

    Article  Google Scholar 

  • Carrillo, P., J. A. Delgado-Molina, J. M. Medina-Sánchez, F. J. Bullejos & M. Villar-Argaiz, 2008a. Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake. Global Change Biology 14: 423–439.

    Article  Google Scholar 

  • Carrillo, P., M. Villar-Argaiz & J. M. Medina-Sánchez, 2008b. Does microorganism stoichiometry predict microbial food web interactions after a phosphorus pulse? Microbial Ecology 56: 350–363.

    Article  PubMed  Google Scholar 

  • Christensen, M. R., M. D. Graham, R. D. Vinebrooke, D. L. Findlay & M. A. Turner, 2006. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Global Change Biology 12: 2316–2322.

    Article  Google Scholar 

  • Davidson, A. & A. van der Heijden, 2000. Exposure of natural Antarctic marine microbial assemblages to ambient UV radiation: effects on bacterioplankton. Aquatic Microbial Ecology 21: 257–264.

    Article  Google Scholar 

  • DeMott, W. R., R. D. Gulati & K. Siewertsen, 1998. Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnology and Oceanography 43: 1147–1161.

    Article  CAS  Google Scholar 

  • Dickman, E., J. Newell, M. González & M. Vanni, 2008. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proceedings of the National Academy of Sciences of the United States of America 105: 18408–18412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elser, J. J., A. L. Peace, M. Kyle, M. Wojewodzic, M. L. McCrackin, T. Andersen & D. O. Hessen, 2010. Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. Ecology Letters 13: 1256–1261.

    Article  PubMed  Google Scholar 

  • Fischer, J., D. Lindenmayer & A. Manning, 2006. Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Frontiers in Ecology and the Environment 4: 80–86.

    Article  Google Scholar 

  • Hairston, N. G., 1976. Photoprotection by carotenoid pigments in the copepod Diaptomus nevadensis. Proceedings of the National Academy of Sciences of the United States of America 73: 971–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansson, L. A. & S. Hylander, 2009. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochemical and Photobiological Sciences 8: 1266–1275.

    Article  CAS  PubMed  Google Scholar 

  • Helbling, E. W. & H. Zagarese, 2003. UV Effects in Aquatic Organisms and Ecosystems. RSC Publishing, Piccadilly.

    Book  Google Scholar 

  • Helbling, E. W., A. G. J. Buma, M. K. de Boer & V. E. Villafañe, 2001. In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Marine Ecology Progress Series 211: 43–49.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change I, 2013. Climate Change 2013, The Physical Science Basis, IPCC WG1 Fifth Assesment Report, (http://www.ipcc.ch/report/ar5/wg1/).

  • Kim, S. T. & A. Sancar, 1993. Photochemistry, photophysics, and mechanisms of pyrimidine dimer repair by DNA photolyase. Photochemistry and Photobiology 57: 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Lampert, W., 1984. The measurement of respiration. In Downing, J. A. & F. H. Rigler (eds), A Manual for the Assessment of Secondary Productivity in Freshwaters. Blackwell, Boston: 413–468.

    Google Scholar 

  • Lampert, W. & M. Muck, 1985. Multiple aspects of food limitation in zooplankton communities: the Daphnia-Eudiaptomus example. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 12: 311–322.

    Google Scholar 

  • Lignell, R., 1992. Problems in filtration fractionation of 14C primary productivity samples. Limnology and Oceanography 37: 172–178.

    Article  CAS  Google Scholar 

  • Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Article  Google Scholar 

  • Mahowald, N., 2011. Aerosol indirect effect on biogeochemical cycles and climate. Nature 334: 794–796.

    CAS  Google Scholar 

  • Medina-Sánchez, J. M., M. Villar-Argaiz & P. Carrillo, 2002. Modulation of the bacterial response to spectral solar radiation by algae and limiting nutrients. Freshwater Biology 47: 2191–2204.

    Article  Google Scholar 

  • Medina-Sánchez, J. M., M. Villar-Argaiz & P. Carrillo, 2004. Neither with nor without you: a complex algal control on bacterioplankton in a high mountain lake. Limnology and Oceanography 49: 1722–1733.

    Article  Google Scholar 

  • Medina-Sánchez, J. M., M. Villar-Argaiz & P. Carrillo, 2006. Solar radiation-nutrient interaction enhances the resource and predation algal control on bacterioplankton: a short-term experimental study. Limnology and Oceanography 51: 913–924.

    Article  Google Scholar 

  • Mladenov, N., R. Sommaruga, R. Morales-Baquero, I. Laurion, L. Camarero, M. C. Diéguez, A. Camacho, A. Delgado, O. Torres, Z. Chen, M. Felip & I. Reche, 2011. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nature Communications 2: 405–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagnes, D. J. S. & A. Fenton, 2012. Prey-abundance affects zooplankton assimilation efficiency and the outcome of biogeochemical models. Ecological Modelling 243: 1–7.

    Article  CAS  Google Scholar 

  • Panfferhöfer, G. A. & S. C. Knowles, 1979. Ecological implications of fecal pellet size, production and consumption by copepods. Journal of Marine Research 37: 35–49.

    Google Scholar 

  • Paul, N. D. & D. Gwynn-Jones, 2003. Ecological roles of solar UV radiation: towards an integrated approach. Trends in Ecology and Evolution 18: 48–55.

    Article  Google Scholar 

  • Peters, R. H. & J. A. Downing, 1984. Empirical analysis of zooplankton filtering and feeding rates. Limnology and Oceanography 29: 763–784.

    Article  Google Scholar 

  • Psenner, R., 1999. Living in a dusty world: airbone dust as a key factor for alpine lakes. Water Air and Soil Pollution 212: 217–227.

    Article  Google Scholar 

  • Pumpanen, J., A. Lindén, H. Miettinen, P. Kolari, H. Ilvesniemi, I. Mammarella, P. Hari, E. Nikinmaa, J. Heinonsalo, J. Bäck, A. Ojala, F. Berninger & T. Vesala, 2014. Precipitation and net ecosystem exchange are the most important drivers of DOC flux in upland boreal catchments. Journal of Geophysical Research: Biogeosciences 119: 1861–1878.

    Google Scholar 

  • Rautio, M. & B. Tartarotti, 2010. UV radiation and freshwater zooplankton: damage, protection and recovery. Freshwater Reviews 3: 105–131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reche, I., P. Carrillo & L. Cruz-Pizarro, 1997. Influence of metazooplankton on interactions of bacteria and phytoplankton in an oligotrophic lake. Journal of Plankton Research 19: 631–646.

    Article  Google Scholar 

  • Ruiz-González, C., R. Simó, R. Sommaruga & J. M. Gasol, 2013. Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity. Frontiers in Microbiology 4: 1–24.

    Article  Google Scholar 

  • Santese, M., F. De Tomasi & M. R. Perrone, 2007. Moderate resolution imaging spectroradiometer (MODIS) and aerosol robotic network (AERONET) retrievals during dust outbreaks over the mediterranean. Journal of Geophysical Research 112: D18201.

    Article  Google Scholar 

  • Schindler, D. W., P. J. Curtis, B. Parker & M. P. Stainton, 1996. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379: 705–708.

    Article  CAS  Google Scholar 

  • Sieracki, M. E. & J. M. Sieburth, 1986. Sunlight-induced growth delay of plankton marine bacteria in filtered sea water. Marine Ecology Progress Series 33: 19–27.

    Article  Google Scholar 

  • Sommaruga, R., 2001. The role of solar UV radiation in the ecology of alpine lakes. Journal of Photochemistry and Photobiology B-Biology 62: 35–42.

    Article  CAS  Google Scholar 

  • Sommaruga, R., J. S. Hofer, L. Alonso-Sáez & J. M. Gasol, 2005. Differential sunlight sensitivity of picophytoplankton from surface mediterranean coastal waters. Applied and Environmental Microbiology 71: 2154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Statsoft, I., 1997. Statistica for Windows. Release 7.1. Statsoft, Tulsa, OK.

  • Steeman-Nielsen, E., 1952. The use of radioactive carbon (C14) for measuring organic production in the sea. Journal du Conseil Permanent International pour l’Exploration de la Mer 18: 117–140.

    Article  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Tartarotti, B., W. Cravero & H. E. Zagarese, 2000. Biological weighting function for the mortality of Boeckella gracilipes (Copepoda, Crustacea) derived from experiments with natural solar radiation. Photochemistry and Photobiology 72: 314–319.

    Article  CAS  PubMed  Google Scholar 

  • Thor, P. & I. Wendt, 2010. Functional response of carbon absorption efficiency in the pelagic calanoid copepod Acartia tonsa Dana. Limnology and Oceanography 5: 1779–1789.

    Article  Google Scholar 

  • Thor, P., M. Koski, K. W. Tang & S. H. Jónasdóttir, 2007. Supplemental effects of diet mixing on absorption of ingested organic carbon in the marine copepod Acartia tonsa. Marine Ecology Progress Series 331: 131–138.

    Article  CAS  Google Scholar 

  • Traill, L. M., N. Sodhi Lim & C. Bradshaw, 2010. Mechanisms driving change: altered species interactions and ecosystem function through global warming. Journal of Animal Ecology 79: 937–947.

    Article  PubMed  Google Scholar 

  • Villar-Argaiz, M., J. M. Medina-Sánchez, L. Cruz-Pizarro & P. Carrillo, 2001. Inter- and intra-annual variability in the phytoplankton community of a high mountain lake: the influence of external (atmospheric) and internal (recycled) sources of phosphorus. Freshwater Biology 46: 1017–1034.

    Article  CAS  Google Scholar 

  • Villar-Argaiz, M., J. M. Medina-Sánchez & P. Carrillo, 2002a. Microbial plankton response to contrasting climatic conditions: insights from community structure, productivity and fraction stoichiometry. Aquatic Microbial Ecology 29: 253–266.

    Article  Google Scholar 

  • Villar-Argaiz, M., J. M. Medina-Sánchez & P. Carrillo, 2002b. Linking life history strategies and ontogeny in crustacean zooplankton: implications for homeostasis. Ecology 83: 1899–1914.

    Article  Google Scholar 

  • Villar-Argaiz, M., F. J. Bullejos, J. M. Medina-Sánchez, E. Ramos-Rodríguez, J. A. Delgado-Molina & P. Carrillo, 2012. Disentangling food quantity and quality effects in zooplankton response to P-enrichment and UV radiation. Limnology and Oceanography 57: 235–250.

    CAS  Google Scholar 

  • Williamson, C. E., R. S. Stemberger, D. P. Morris, T. M. Frost & S. G. Paulsen, 1996. Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnology and Oceanography 41: 1024–1034.

    Article  CAS  Google Scholar 

  • Zellmer, I. D., 1998. The effect of solar UVA and UVB on subarctic Daphnia pulicaria in its natural habitat. Hydrobiologia 379: 55–62.

    Article  Google Scholar 

  • Zellmer, I. D., M. T. Arts & V. Strus, 2006. Food chain effects of sublethal ultraviolet radiation on subarctic Daphnia pulex-A field and laboratory study. Archiv für Hydrobiologie 167: 515–531.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Junta de Andalucía (P12-RNM327 to MVA) and the Spanish Ministry of `Ciencia e Innovación´ (CGL2011-23681 to PC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Villar-Argaiz.

Additional information

Handling editor: Sigrún Huld Jónasdóttir

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villar-Argaiz, M., Medina-Sánchez, J.M. & Carrillo, P. Microbial carbon production and transfer across trophic levels is affected by solar UVA and phosphorus. Hydrobiologia 776, 221–235 (2016). https://doi.org/10.1007/s10750-016-2755-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2755-1

Keywords

Navigation