Skip to main content
Log in

Quantitative trait loci associated with salinity tolerance in field grown bread wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The differential response to field salinity of the parents of the ITMI wheat mapping population (cv. Opata 85 and the synthetic hexaploid W7984) was exploited to perform a QTL analysis of the response to salinity stress of a set of agronomic traits over two seasons. The material was irrigated either with potable water (EC of 1.0 dS m−1) or with diluted seawater (12.0 dS m−1). Grain yield was positively correlated with tiller number, plant height, percentage survival, ear weight, ear length, grain number per ear, grain weight and thousand grain weight, and negatively with time to booting, anthesis and physiological maturity, under both the control and salinity stress treatments. In all, 22 QTL were detected under control conditions, and 36 under salinity stress. Of the latter, 13 were major loci (LOD > 3.0) and eight were reproducible across both seasons. Chromosome 2D harboured 15 salinity stress associated QTL and chromosome 4A six such QTL. The remaining loci were located on chromosomes 2A, 5A, 6A, 7A, 1B, 4B, 3B, 6B, 7B and 6D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ashraf M, O’Leary JW (1996) Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress: 1. Yield components and ion distribution. J Agron Crop Sci 176:91–101

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57(5):1059–1078

    Article  PubMed  CAS  Google Scholar 

  • Díaz De León JL, Carrillo-Laguna M, Rajaram S, Mujeeb-Kazi A (1995) Rapid in vitro screening of salt tolerant wheats. Cereal Res Commun 23:383–389

    Google Scholar 

  • Díaz De León JL, Escoppinichi R, Zavala-Fonseca R, Mujeeb-Kazi A (2000) A sea-water based salinity testing protocol and the performance of a tester set of accumulated wheat germplasm. Ann Wheat Newsl 46:88–90

    Google Scholar 

  • Díaz De León JL, Escoppinichi R, Molina E, López-Cesati J, Delgado R, Mujeeb-Kazi A (2001) Salt tolerant bread wheat germplasm. Ann Wheat Newsl 47:117–118

    Google Scholar 

  • Díaz De León JL, Escoppinichi R, Zavala-Fonseca R, Castellanos T, Röder MS, Mujeeb-Kazi A (2010) Phenotypic and genotypic characterization of salt-tolerant wheat genotypes. Cereal Res Commun 38(1):15–22. doi:10.1556/CRC.38.2010.1.2

  • Dubcovsky J, Santa María G, Epstein E, Luo MC, Dvorák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    Article  CAS  Google Scholar 

  • El-Hendawy SE, Hu Y, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron 22:243–253

    Article  CAS  Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 84:219–255

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319. doi:10.1093/jxb/erh003

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, genomics applications in crops, vol 2. Springer, Netherlands, pp 1–24

    Chapter  Google Scholar 

  • Gao MJ, Dvorák J, Travis RL (2001) Expression of the extrinsic 23-kDa protein of photosystem II in response to salt stress is associated with the K+/Na+ discrimination locus Kna 1 in wheat. Plant Cell Rep 20:774–778

    Article  CAS  Google Scholar 

  • García-Suárez J (2010) Determinación de QTLs en la población para mapeo genético de trigo ITMI e identificación de microsatélites como marcadores moleculares bajo condiciones de estrés salino y de nulo aporte de fertilización nitrogenada. Dissertation, Universidad Autónoma de Sinaloa. México

  • García-Suárez J, Díaz De León JL, Röder M (2010) Identification of QTLs and associated molecular markers related to starch degradation in wheat seedlings (Triticum aestivum L.) under saline stress. Cereal Res Commun 38(2):163–174

    Article  Google Scholar 

  • Gorham J, Hardy C, Wyn Jones RG, Joppa LR, Law CN (1987) Chromosomal location for a K:Na discrimination character in the D genome of wheat. Theor Appl Genet 74:584–588

    Article  CAS  Google Scholar 

  • Greenway K, Munns R (1980) Mechanism of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Huang XQ, Röder MS, Pestsova E, Börner A, Ganal MW (2001) Development and use of wheat microsatellite markers for the characterization of germplasm of hexaploid wheat (Triticum aestivum L.). In: The Plant and Animal Genome IX Conference, Jan. 2001, San Diego, California, pp 260.13–260.17

  • Kato K, Miura H, Sawada S (2000) Mapping QTL controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping population of bread wheat. Mol Breed 19:163–177

    Article  Google Scholar 

  • Li WL, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366

    Article  CAS  Google Scholar 

  • Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114

    Article  CAS  Google Scholar 

  • Ma L, Zhou E, Huo N, Zhow R, Wang G, Jia J (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153(1–2):109–117

    CAS  Google Scholar 

  • Marino CL, Nelson JC, Lu YH, Sorrels ME, Leroz P, Tuleen NA, Lopes CR, Hart GE (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome 39:359–366

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Hart GE, Devos, KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: Slinkard AE (ed) Proceedings of the 9th International Wheat Genetics Symposium, vol 5. University Extension Press, University of Saskatchewan, pp 1–236

  • Mujeeb-Kazi A (2003). New genetic stocks for durum and bread wheat improvement. In: Pogna N, Romano M, Pogna EA, Galterio G (eds) 10th International Wheat Genetics Symposium. Paestum, Instituto Sperimentale per la Cerealicultura. Rome, Italy, pp 772–774

  • Mujeeb-Kazi A, Díaz De León JL (2002) Conventional and alien genetic diversity for salt tolerant wheats: focus on current status and new germ plasm development. In: Ahmad R, Malik KA (eds) Prospects for saline agriculture. Kluwer Academic Publishers, Netherlands, pp 69–82

    Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh (Aegilops squarrosa auct. Non L.) in synthetic hexaploides wheats (T. turgidum L.s.lat × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Res Crop Evol 43:129–134

    Article  Google Scholar 

  • Munns R, Hare RA, James RA, Rebetzke GJ (1999) Genetic variation for improving the salt tolerance of durum wheat. Austral J Agricult Res 51:69–74

    Article  Google Scholar 

  • Nelson JC (1997) QGene: Software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995a) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995b) Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995c) Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  • Pritchard DJ, Hollington PA, Davies WP, Gorham J, Díaz De León JL, Mujeeb-Kazi A (2001) Synthetic hexaploid wheats (2n = 6x = 42, AABBDD) and their salt tolerance potential. Ann Wheat Newsl 47:103–104

    Google Scholar 

  • Pritchard DJ, Hollington PA, Davies WP, Gorham J, Díaz De León JL, Mujeeb-Kazi A (2002) K+/Na+ discrimination in synthetic hexaploid wheat lines: transfer of the trait for K+/Na+ discrimination for Aegilops tauschii to Triticum turgidum. Cereal Res Commun 30(3–4):261–267

    CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodoskii A, Lebreton C et al (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese spring × SQ1 and its use to compare QTL for the grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Huang XQ, Ganal MW (2004) Wheat microsatellites in plant breeding-potential and implications. In: Loerz H, Wenzel G (eds) Molecular markers in plant breeding. Springer-Verlag, Heidelberg, pp 255–266

    Google Scholar 

  • Semikhodoskii AG (1997) Mapping Quantitative traits for salinity responses in wheat (Triticum aestivum L.). Dissertation. East Anglia University, England, UK

  • Semikhodoskii AG, Quarrie SA, Snape JW (1996) Mapping quantitative trait loci for salinity response in wheat. In: Proceeding of drought and plant production, Lepenski Vir Meeting. Serbia, pp 83–92

  • Shah SH, Gorham J, Forster BP, Wyn Jones RG (1987) Salt tolerance in the Triticeae: the contribution of the D genome to cation selectivity in hexaploid wheat. J Exp Bot 38:254–269

    Google Scholar 

  • Shannon MC (1982) Genetics of salt tolerance: new challenges. In: Pietro AS (ed) Biosaline research: a look to the future. Plenum Publishing, New York, pp 271–282

    Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrels ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for Group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    Article  PubMed  CAS  Google Scholar 

  • Yokoy S, Bressan RB, Hasegawa PM (2002) Salt stress tolerance of plants. In Iwanaga M (ed) Genetic engineering of crop plants for abiotic stress (JIRCAS working report No. 23), pp 25–33

  • Zavala-Fonseca R, Escoppinichi R, Mujeeb-Kazi A, Díaz De León JL (1998) Salt tolerance expression of synthetic wheat (T. durum AABB × T. tauschii DD) irrigated with sea water dilutions. VIII National congress of biochemistry and molecular biology of plants and 2nd symposium Mexico-U.S.A. 15–18 March 1998. Guanajuato, Mexico, p 28

Download references

Acknowledgments

We thank Matthew Reynolds (CIMMYT) for providing seed materials, Annette Heber at IPK for technical assistance and Ira Fogel at CIBNOR for editorial advice. This research was supported by CONACYT of Mexico (36608-B), the bilateral interchange program CONACYT-BMBF of Germany and PROMEP grants to J. L. Díaz De León.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Díaz De León.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz De León, J.L., Escoppinichi, R., Geraldo, N. et al. Quantitative trait loci associated with salinity tolerance in field grown bread wheat. Euphytica 181, 371–383 (2011). https://doi.org/10.1007/s10681-011-0463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0463-5

Keywords

Navigation