Skip to main content

Advertisement

Log in

An assessment of the optimal scale for monitoring of MODIS and FIA NPP across the eastern USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Robust monitoring of carbon sequestration by forests requires the use of multiple data sources analyzed at a common scale. To that end, model-based Moderate Resolution Imaging Spectroradiometer (MODIS) and field-based Forest Inventory and Analysis (FIA) data of net primary productivity (NPP) were compared at increasing levels of spatial aggregation across the eastern USA. A total of 52,167 FIA plots and colocated MODIS forest cover NPP pixels were analyzed using a hexagonal tiling system. A protocol was developed to assess the optimal scale as an optimal size of landscape patches at which to map spatially explicit estimates of MODIS and FIA NPP. The optimal mapping resolution (hereafter referred to as optimal scale) is determined using spatially scaled z-statistics as the tradeoff between increased spatial agreement as measured by Pearson’s correlation coefficient and decreased details of coverage as measured by the number of hexagons. Spatial sensitivity was also assessed using land cover assessment and forest homogeneity using spatially scaled z-statistics. Pearson correlations indicate that MODIS and FIA NPP are most highly correlated when using large hexagons, while z-statistics indicate an optimal scale at an intermediate hexagon size of 390 km2. This optimal scale had more spatial detail than was obtained for larger hexagons and greater spatial agreement than was obtained for smaller hexagons. The z-statistics for land cover assessment and forest homogeneity also indicated an optimal scale of 390 km2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahl, D. E., Gower, S. T., Mackay, D. S., Burrows, S. N., Norman, J. M., & Diak, G. R. (2005). The effects of aggregated land cover data on estimating NPP in northern Wisconsin. Remote Sensing of Environment, 97(1), 1–14. doi:10.1016/j.rse.2005.02.016.

    Article  Google Scholar 

  • Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479–492. doi:10.1046/j.1365-2486.2003.00629.x.

    Article  Google Scholar 

  • Bettinger, P., Clutter, M., Siry, J., Kane, M., & Pait, J. (2009). Broad implications of southern United States pine clonal forestry on planning and management of forests. International Forestry Review, 11(3), 331–345.

    Article  Google Scholar 

  • Bian, L., & Butler, R. (1999). Comparing effects of aggregation methods on statistical and spatial properties of simulated spatial data. Photogrammetric Engineering and Remote Sensing, 65(1), 73–84.

    Google Scholar 

  • Bian, L., & Walsh, S. J. (1993). Scale dependencies of vegetation and topography in a mountainous environment of Montana. The Professional Geographer, 45(1), 1–11. doi:10.1111/j.0033-0124.1993.00001.x.

    Article  Google Scholar 

  • Birdsey, R. (1996). Carbon storage for major forest types and regions in the conterminous United States. American Forests, 2, 261–371.

    Google Scholar 

  • Blackard, J. A., Finco, M. V., Helmer, E. H., Holden, G. R., Hoppus, M. L., Jacobs, D. M., et al. (2008). Mapping US forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sensing of Environment, 112(4), 1658–1677. doi:10.1016/j.rse.2007.08.021.

    Article  Google Scholar 

  • Brown, S. L., & Schroeder, P. E. (1999). Spatial patterns of aboveground production and mortality of woody biomass for eastern US forests. Ecological Applications, 9(3), 968–980.

    Google Scholar 

  • Cirincione, C., Darling, T., & O'Rourke, T. (2000). Assessing South Carolina's 1990s congressional districting. Political Geography, 19(2), 289–211.

    Article  Google Scholar 

  • Coops, N. C., Waring, R. H., & Landsberg, J. J. (1998). Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. Forest Ecology and Management, 104(1–3), 113–127.

    Article  Google Scholar 

  • Cressie, N. (1993). Aggregation in geostatistical problems (Geostatistics Troia '92). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Fisher, R. A. (1921). On the "probable error" of a coefficient of correlation deduced from a small sample. Metron, 1, 3–32.

    Google Scholar 

  • Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97(458), 632–648. doi:10.1198/016214502760047140.

    Article  Google Scholar 

  • Hay, G. J., Marceau, D. J., Dube, P., & Bouchard, A. (2001). A multiscale framework for landscape analysis: Object-specific analysis and upscaling. Landscape Ecology, 16(6), 471–490. doi:10.1023/a:1013101931793.

    Article  Google Scholar 

  • Heinsch, F. A., Zhao, M. S., Running, S. W., Kimball, J. S., Nemani, R. R., Davis, K. J., et al. (2006). Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1908–1925. doi:10.1109/tgrs.2005.853936.

    Article  Google Scholar 

  • Houghton, R. A., Hackler, J. L., & Lawrence, K. T. (1999). The US carbon budget: Contributions from land-use change. Science, 285(5427), 574–578.

    Article  CAS  Google Scholar 

  • Jelinski, D. E., & Wu, J. G. (1996). The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology, 11(3), 129–140. doi:10.1007/bf02447512.

    Article  Google Scholar 

  • Jenkins, J. C., Kicklighter, D. W., Ollinger, S. V., Aber, J. D., & Melillo, J. M. (1999). Sources of variability in net primary production predictions at a regional scale: A comparison using PnET-II and TEM 4.0 in northeastern US forests. Ecosystems, 2(6), 555–570. doi:10.1007/s100219900102.

    Article  Google Scholar 

  • Jenkins, J. C., Birdsey, R. A., & Pan, Y. (2001). Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data. Ecological Applications, 11(4), 1174–1193.

    Article  Google Scholar 

  • Jenkins, J., Chojnacky, D., Heath, L., & Birdsey, R. (2004). Comprehensive database of diameter-based biomass regressions for North American tree species. Newtown Square: US Department of Agriculture, Forest Service, Northeastern Research Station. (45 pp).

  • Knight, J. F., & Lunetta, R. S. (2003). An experimental assessment of minimum mapping unit size. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 2132–2134. doi:10.1109/tgrs.2003.816587.

    Article  Google Scholar 

  • Kwon, Y., & Larsen, C. (2012). Use of pixel- and plot-scale screening variables to validate MODIS GPP predictions with Forest Inventory and Analysis NPP measures across the eastern USA. International Journal of Remote Sensing, 33(19), 6122–6148.

    Article  Google Scholar 

  • Loehle, C., & LeBlanc, D. (1996). Model-based assessments of climate change effects on forests: A critical review. Ecological Modelling, 90(1), 1–31.

    Article  CAS  Google Scholar 

  • Lu, D. S. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7), 1297–1328. doi:10.1080/01431160500486732.

    Article  Google Scholar 

  • McRoberts, R. E., Bechtold, W. A., Patterson, P. L., Scott, C. T., & Reams, G. A. (2005). The enhanced forest inventory and analysis program of the USDA Forest Service: Historical perspective and announcement of statistical documentation. Journal of Forestry, 103(6), 304–308.

    Google Scholar 

  • Meentemeyer, V. (1989). Geographical perspectives of space, time, and scale. Landscape Ecology, 3(3–4), 163–173. doi:10.1007/bf00131535.

    Article  Google Scholar 

  • Monteith, J. L. (1972). Climate and efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London, 281, 277–294.

    Article  Google Scholar 

  • Muukkonen, P., & Heiskanen, J. (2007). Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sensing of Environment, 107(4), 617–624. doi:10.1016/j.rse.2006.10.011.

    Article  Google Scholar 

  • Nayak, R. K., Patel, N. R., & Dadhwal, V. K. (2010). Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model. Environmental Monitoring and Assessment, 170(1–4), 195–213. doi:10.1007/s10661-009-1226-9.

    Article  Google Scholar 

  • Openshaw, S., & Taylor, P. (1979). A million or so correlation coefficients: Three experiments on the modifiable area unit problem. In N. Wrigley (Ed.), Statistical applications in the spatial sciences. London: Pion.

    Google Scholar 

  • Pan, Y., Birdsey, R., Hom, J., McCullough, K., & Clark, K. (2006). Improved estimates of net primary productivity from MODIS satellite data at regional and local scales. Ecological Applications, 16(1), 125–132.

    Article  Google Scholar 

  • Potter, C., Gross, P., Klooster, S., Fladeland, M., & Genovese, V. (2008). Storage of carbon in US forests predicted from satellite data, ecosystem modeling, and inventory summaries. Climatic Change, 90(3), 269–282. doi:10.1007/s10584-008-9462-5.

    Article  CAS  Google Scholar 

  • Riemann, R., Wilson, B. T., Lister, A., & Parks, S. (2010). An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data. Remote Sensing of Environment, 114(10), 2337–2352. doi:10.1016/j.rse.2010.05.010.

    Article  Google Scholar 

  • Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M. S., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), 547–560.

    Article  Google Scholar 

  • Shifley, S. R., Aguilar, F. X., Song, N., Stewart, S. I., Nowak, D. J., Gormanson, D. D., et al. (2012). Forests of the Northern United States. Newtown Square: US Department of Agriculture, Forest Service, Northeastern Research Station. (202 pp).

  • Tan, B., Woodcock, C. E., Hu, J., Zhang, P., Ozdogan, M., Huang, D., et al. (2006). The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sensing of Environment, 105(2), 98–114. doi:10.1016/j.rse.2006.06.008.

    Article  Google Scholar 

  • Tang, G., Beckage, B., Smith, B., & Miller, P. A. (2010). Estimating potential forest NPP, biomass and their climatic sensitivity in New England using a dynamic ecosystem model. Ecosphere, 1(16), art18, doi:10.1890/ES10-00087.1.

  • Tomppo, E., Olsson, H., Stahl, G., Nilsson, M., Hagner, O., & Katila, M. (2008). Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sensing of Environment, 112(5), 1982–1999. doi:10.1016/j.rse.2007.03.032.

    Article  Google Scholar 

  • Turner, D. P., Ollinger, S., Smith, M. L., Krankina, O., & Gregory, M. (2004). Scaling net primary production to a MODIS footprint in support of Earth observing system product validation. International Journal of Remote Sensing, 25(10), 1961–1979.

    Article  Google Scholar 

  • Turner, D. P., Ritts, W. D., Cohen, W. B., Gower, S. T., Running, S. W., Zhao, M. S., et al. (2006). Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sensing of Environment, 102(3–4), 282–292. doi:10.1016/j.rse.2006.02.017.

    Article  Google Scholar 

  • Wang, Y. J., Woodcock, C. E., Buermann, W., Stenberg, P., Voipio, P., Smolander, H., et al. (2004). Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sensing of Environment, 91(1), 114–127. doi:10.1016/j.rsc.2004.02.007.

    Article  Google Scholar 

  • Waring, R. H., Coops, N. C., & Landsberg, J. J. (2010). Improving predictions of forest growth using the 3-PGS model with observations made by remote sensing. Forest Ecology and Management, 259(9), 1722–1729. doi:10.1016/j.foreco.2009.05.036.

    Article  Google Scholar 

  • White, D., Kimerling, A. J., & Overton, W. S. (1992). Cartographic and geometric components of a global sampling design for environmental monitoring. Cartography and Geographic Information Systems, 19(1), 5–22.

    Article  Google Scholar 

  • White, J. D., Scott, N. A., Hirsch, A. I., & Running, S. W. (2006). 3-PG productivity modeling of regenerating Amazon forests: Climate sensitivity and comparison with MODIS-derived NPP. Earth Interactions, 10, 1–25.

    Google Scholar 

  • Wu, J. (1999). Hierarchy and scaling: Extrapolating information along a scaling ladder. Canadian Journal of Remote Sensing, 25, 367–380.

    Google Scholar 

  • Wu, H., & Li, Z. L. (2009). Scale issues in remote sensing: A review on analysis, processing and modeling. Sensors, 9(3), 1768–1793. doi:10.3390/s90301768.

    Article  Google Scholar 

  • Wu, J., Jelinski, D. E., Luck, M., & Tueller, P. T. (2000). Multiscale analysis of landscape heterogeneity: Scale variance and pattern metrics. Geographic Information Sciences, 6(1), 6–19.

    Google Scholar 

  • Zhang, X. Y., & Kondragunta, S. (2006). Estimating forest biomass in the USA using generalized allometric models and MODIS land products. Geophysical Research Letters, 33(9), doi:L0940210.1029/2006gl025879.

    Article  Google Scholar 

  • Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994), 940–943. doi:10.1126/science.1192666.

    Article  CAS  Google Scholar 

  • Zhao, M., & Running, S. W. (2011). Response to comments on "Drought-induced reduction in global terrestrial net primary production from 2000 through 2009". Science, 333(6046), doi:10.1126/science.1199169.

    Article  Google Scholar 

  • Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95(2), 164–176. doi:10.1016/j.rse.2004.12.011.

    Article  Google Scholar 

  • Zhao, M., Running, S. W., & Nemani, R. R. (2006). Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. Journal of Geophysical Research-Biogeosciences, 111(G1), doi:10.1029/2004jg000004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsang Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, Y., Larsen, C.P.S. An assessment of the optimal scale for monitoring of MODIS and FIA NPP across the eastern USA. Environ Monit Assess 185, 7263–7277 (2013). https://doi.org/10.1007/s10661-013-3099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3099-1

Keywords

Navigation