Skip to main content

Advertisement

Log in

Factors and sources influencing ionic composition of atmospheric condensate during winter season in lower troposphere over Delhi, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Atmospheric condensate (AC) and rainwater samples were collected during 2010–2011 winter season from Delhi and characterized for major cations and anions. The observed order of abundance of cations and anions in AC samples was NH +4  > Ca2+ > Na+ > K+ > Mg2+ and HCO 3  > SO 2−4  > Cl > NO 2  > NO 3  > F, respectively. All samples were alkaline in nature and Σ cation/Σ anion ratio was found to be close to one. NH +4 emissions followed by Ca2+ and Mg2+ were largely responsible for neutralization of acidity caused by high NO x and SO2 emissions from vehicles and thermal power plants in the region. Interestingly, AC samples show low nitrate content compared with its precursor nitrite, which is commonly reversed in case of rainwater. It could be due to (1) slow light-mediated oxidation of HONO; (2) larger emission of NO2 and temperature inversion conditions entrapping them; and (3) formation and dissociation of ammonium nitrite, which seems to be possible as both carry close correlation in our data set. Principal component analysis indicated three factors (marine mixed with biomass burning, anthropogenic and terrestrial, and carbonates) for all ionic species. Significantly higher sulfate/nitrate ratio indicates greater anthropogenic contributions in AC samples compared with rainwater. Compared with rainwater, AC samples show higher abundance of all ionic species except SO4, NO3, and Ca suggesting inclusion of these ions by wash out process during rain events. Ionic composition and related variations in AC and rainwater samples indicate that two represent different processes in time and space coordinates. AC represents the near-surface interaction whereas rainwater chemistry is indicative of regional patterns. AC could be a suitable way to understand atmospheric water interactions with gas and solid particle species in the lower atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acker, K., Beysens, D., & Moller, D. (2008). Nitrite in dew, fog, cloud and rain water: an indicator for heterogeneous processes on surfaces. Atmospheric Research, 87, 200–212.

    Article  CAS  Google Scholar 

  • Ali, K., Momin, G. A., Tiwari, S., Safai, P. D., Chate, D. M., & Rao, P. S. P. (2004). Fog and precipitation chemistry at Delhi, North India. Atmospheric Environment, 38, 4215–4222.

    Article  CAS  Google Scholar 

  • Bertrand, G., Celle-Jeanton, H., Laj, P., Rangognio, J., & Chazot, G. (2008). Rainfall chemistry: long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). Journal of Atmospheric Chemistry, 60, 253–271.

    Article  CAS  Google Scholar 

  • Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek, K. W., & Olivier, J. G. J. (1997). A global high resolution emission inventory for ammonia. Global Biogeochemical Cycles, 11, 561–587.

    Article  CAS  Google Scholar 

  • Cadle, S. H., Countess, R. J., & Kelly, N. A. (1982). Nitric acid and ammonia in urban and rural locations. Atmospheric Environment, 16, 2501–2506.

    Article  CAS  Google Scholar 

  • Cao, J. J., Zhang, T., Chow, J. C., Watson, J. G., Wu, F., & Li, H. (2009). Characterization of atmospheric ammonia over Xi’an, China. Aerosol and Air Quality Research, 9, 277–289.

    CAS  Google Scholar 

  • Eckardt, E. D., & Schemenauer, R. S. (1998). Fog water chemistry in the Namib Desert, Namibia. Atmospheric Environment, 32, 2595–2599.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Whelpdale, D. M., & Wolff, G. T. (1984). The flux of S and N eastward from North America. Atmospheric Environment, 18, 2595–2607.

    Article  CAS  Google Scholar 

  • Kapoor, R. K., Singh, G., & Tiwari, S. (1992). Ammonia concentration vis-a-vis meteorological conditions at Delhi, India. Atmospheric Research, 28, 1–9.

    Article  CAS  Google Scholar 

  • Kapoor, R. K., Tiwari, S., Ali, K., & Singh, G. (1993). Chemical analysis of fog water at Delhi, North India. Atmospheric Environment, 27, 2453–2455.

    Article  Google Scholar 

  • Keene, W. C., Pszenny, A. A. P., Galloway, J. N., & Hawley, M. E. (1986). Sea-salt corrections and interpretation of constituent rations in marine precipitation. Journal of Geophysical Research, 91, 6647–6658.

    Article  CAS  Google Scholar 

  • Khare, P., Goel, A., Patel, D., & Behari, J. (2004). Chemical characterization of rainwater at a developing urban habitat of Northern India. Atmospheric Research, 69, 135–145.

    Article  CAS  Google Scholar 

  • Khemani, L. T., Tewari, S., Singh, G., Momin, G. A., Naik, M. S., Rao, P. S. P., Safai, P. D., & Pillai, A. G. (1995). Acid deposition in the vicinity of a Super Thermal Power Plant in India. Terrestrial Atmospheric Oceanic Science, 6, 453–459.

    Google Scholar 

  • Kirchestetter, T. W., Harley, R. A., & Littlejohn, D. (1996). Measurement of nitrous acid in motor vehicle exhaust. Environmental Science and Technology, 30, 2843–2849.

    Article  Google Scholar 

  • Kleinman, M. T., Tomczyk, C., Leaderer, B. P., & Tanner, R. L. (1979). Inorganic nitrogen compounds in New York City Air. Annals of the New York Academy of Sciences, 322, 115–123. doi:10.1111/j.1749-6632.1979.tb14121.x.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Kulshrestha, M. J., Sekar, R., Sastry, G. S. R., & Vairamani, M. (2003). Chemical characteristics of rainwater at an urban site of south-central India. Atmospheric Environment, 37, 3019–3026.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Granat, L., Engardt, M., & Rodhe, H. (2005). Review of precipitation monitoring studies in India—a search for regional patterns. Atmospheric Environment, 39, 7403–7419.

    Article  CAS  Google Scholar 

  • Lacaux, J. P., Delmas, R., Koudio, G., Cros, B., & Andreae, M. O. (1992). Precipitation chemistry in the Mayonbe forest of equatorial Africa. Journal of Geophysical Research, 97, 6195–6206.

    Article  CAS  Google Scholar 

  • Lakhani, A., Parmar, R. S., Satsangi, G. S., & Prakash, S. (2007). Chemistry of fogs at Agra, India: influence of soil particulates and atmospheric gases. Environmental Monitoring and Assessment, 133, 435–445.

    Article  CAS  Google Scholar 

  • Lehmann, C. M., Bowersox, V. C., & Larson, S. M. (2005). Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002. Environmental Pollution, 135, 347–361.

    Article  CAS  Google Scholar 

  • Liu, W. J., Zhang, Y. P., Li, H. M., Meng, F. R., Liu, Y. H., & Wang, C. M. (2005). Fog and rainwater chemistry in the tropical seasonal rain forest of Xishuangbanna, Southwest China. Water, Air, and Soil Pollution, 167, 295–309.

    Article  CAS  Google Scholar 

  • Migliavacca, D., Teixeira, E. C., Pires, M., & Fachel, J. (2004). Study of chemical elements in atmospheric precipitation in South Brazil. Atmospheric Environment, 38, 1641–1656.

    Article  CAS  Google Scholar 

  • Migliavacca, D., Teixeira, E. C., Wiegand, F., Machado, A. C. M., & Sanchez, J. (2005). Atmospheric precipitation and chemical composition of an urban site, Guaiba hydrographic basin, Brazil. Atmospheric Environment, 39, 1829–1844.

    Article  CAS  Google Scholar 

  • Mouli, P. C., Mohan, S. V., & Reddy, J. S. (2005). Rainwater chemistry at a regional representative urban site: influence of terrestrial sources on ionic composition. Atmospheric Environment, 39, 999–1008.

    Article  CAS  Google Scholar 

  • Obaidy, A. H. M. J. A., & Joshi, H. (2006). Chemical composition of rainwater in a tropical urban area of northern India. Atmospheric Environment, 40, 6886–6891.

    Article  CAS  Google Scholar 

  • Parashar, D. C., Kulshrestha, U. C., & Jain, M. (2001). Precipitation and aerosol studies in India. Environmental Monitoring and Assessment, 66, 47–61.

    Article  CAS  Google Scholar 

  • Rastogi, N., & Sarin, M. M. (2005). Chemical characteristics of individual rain events from a semi-arid region in India: Three-year study. Atmospheric Environment, 39, 3313–3323.

    Article  CAS  Google Scholar 

  • Rondon, A., & Sanhueza, E. (1989). High HONO atmospheric concentrations during vegetation burning in the tropical savannah. Tellus B, 41B, 474–477.

    Article  CAS  Google Scholar 

  • Rubio, M. A., Lissi, E., & Villena, G. (2002). Nitrite in rain and dew in Santiago city, Chile. Its possible impact in early morning start of the photochemical smog. Atmospheric Environment, 36, 293–297.

    Article  CAS  Google Scholar 

  • Rubio, M. A., Lissi, E., & Villena, G. (2008). Factors determining the concentration of nitrite in dew from Santiago, Chile. Atmospheric Environment, 42, 7651–7656.

    Article  CAS  Google Scholar 

  • Salve, P. R., Maurya, A., Wate, S. R., & Devotta, S. (2008). Chemical composition of major ions in rainwater. Bulletin of Environmental Contamination and Toxicology, 80, 242–246.

    Article  CAS  Google Scholar 

  • Sander, S. P., & Seinfeld, J. H. (1976). Chemical kinetics of homogeneous oxidation of sulphur dioxide. Environmental Science and Technology, 10, 1114–1123.

    Article  CAS  Google Scholar 

  • Saxena, A., Kulshrestha, U., Kumar, N., Kumari, K., & Srivastava, S. (1996). Characterization of precipitation at Agra. Atmospheric Environment, 30, 3405–3412.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H. (1986). Atmospheric chemistry and physics of air pollution. New York: Wiley.

    Google Scholar 

  • Singh, S. P., Khare, P., Kumari, K. M., & Srivastava, S. S. (2006). Chemical characterization of dew at a regional representative site of North-Central India. Atmospheric Research, 80, 239–249.

    Article  CAS  Google Scholar 

  • Song, F., & Gao, Y. (2009). Chemical characteristics of precipitation at metropolitan Newark in the US East Coast. Atmospheric Environment, 43, 4903–4913.

    Article  CAS  Google Scholar 

  • Tandon, A., Yadav, S., & Attri, A. K. (2008). City wide sweeping a source for respirable particulate matter in the atmosphere. Atmospheric Environment, 42, 1064–1069.

    Article  CAS  Google Scholar 

  • Tandon, A., Yadav, S., & Attri, A. K. (2010). Coupling between meteorological factors and ambient aerosol load. Atmospheric Environment, 44, 1237–1243.

    Article  CAS  Google Scholar 

  • Tiwari, S., Kulshrestha, U. C., & Padmanabhamurty, B. (2007). Monsoon rain chemistry and source apportionment using receptor modeling in and around National Capital Region (NCR) of Delhi, India. Atmospheric Environment, 41, 5595–5604.

    Article  CAS  Google Scholar 

  • Tiwari, S., Payra, S., Mohan, M., Verma, S., & Bisht, D. S. (2011). Visibility degradation during foggy period due to anthropogenic urban aerosol at Delhi, India. Atmospheric Pollution Research, 2, 116–120.

    Article  Google Scholar 

  • Willey, J. D., & Wilson, C. A. (1993). Formic and acetic acid in atmospheric condensate in Wilmington, North Carolina. Journal of Atmospheric Chemistry, 16, 123–133.

    Article  CAS  Google Scholar 

  • Winiwarter, W., Puxbaump, H., Schoner, W., Bohm, R., Werner, R., Vitovec, W., & Kasper, A. (1998). Concentration of ionic compounds in the wintertime deposition: results and trends from the Austrian Alps over 11 years (1983–1993). Atmospheric Environment, 32, 4031–4040.

    Article  CAS  Google Scholar 

  • Yadav, S., & Rajamani, V. (2004). Geochemistry of aerosols of Northwestern Part of India adjoining the Thar Desert. Geochimica et Cosmochimica Acta, 68, 1975–1988.

    Article  CAS  Google Scholar 

  • Yadav, S., & Rajamani, V. (2006). Air quality and trace metal chemistry of different size fractions of aerosols in N–NW India—implications for source diversity. Atmosphere Environment, 40, 698–712.

    Article  CAS  Google Scholar 

  • Zunckel, M., Saizar, C., & Zarauz, J. (2003). Rainwater composition in Northeast Uruguay. Atmospheric Environment, 37, 1601–1611.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to two anonymous referees for their critical comment in improving the quality of the manuscript. PK is thankful to the Council of Scientific and Industrial Research, New Delhi for research fellowship during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Yadav.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

Showing the correlation between A) Mg2+ concentrations (ppm) measured on IC and FAAS, B) all measured ions in all AC sample using two different make Ion Chromatography. (DOC 75.0 kb)

Online resource 2

Showing the meteorological parameters observed during the sampling period of atmospheric condensate samples (DOCX 14.8 kb)

Online resource 3

Correlation matrix for ionic species studied in atmospheric condensate collected over Delhi (DOC 44.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Yadav, S. Factors and sources influencing ionic composition of atmospheric condensate during winter season in lower troposphere over Delhi, India. Environ Monit Assess 185, 2795–2805 (2013). https://doi.org/10.1007/s10661-012-2749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2749-z

Keywords

Navigation