Skip to main content
Log in

Symplectic spread-based generalized Kerdock codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Kerdock codes (Kerdock, Inform Control 20:182–187, 1972) are a well-known family of non-linear binary codes with good parameters admitting a linear presentation in terms of codes over the ring \({\mathbb{Z}_{4}}\) (see Nechaev, Diskret Mat 1:123–139, 1989; Hammons et al., IEEE Trans Inform Theory 40:301–319, 1994). These codes have been generalized in different directions: in Calderbank et al. (Proc Lond Math Soc 75:436–480, 1997) a symplectic construction of non-linear binary codes with the same parameters of the Kerdock codes has been given. Such codes are not necessarily equivalent. On the other hand, in Kuzmin and Nechaev (Russ Math Surv 49(5), 1994) the authors give a family of non-linear codes over the finite field F of q = 2l elements, all of them admitting a linear presentation over the Galois Ring R of cardinality q 2 and characteristic 22. The aim of this article is to merge both approaches, obtaining in this way new families of non-linear codes over F that can be presented as linear codes over the Galois Ring R. The construction uses symplectic spreads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berger T, Charpin P (1993) The automorphism group of generalized Reed-Muller codes. Discrete Math 117(1–3):1–17

    Article  MATH  MathSciNet  Google Scholar 

  2. Brown EH (1972) Generalizations of the Kervaire’s invariant. Ann Math 95:368–383

    Article  Google Scholar 

  3. Calderbank AR, Cameron PJ, Kantor WM, Seidel JJ (1997) \({\mathbb{Z}_4}\) -Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc Lond Math Soc 75(2):436–480

    Article  MATH  MathSciNet  Google Scholar 

  4. Carlet C (1995) On \({\mathbb{Z}_4}\) -duality. IEEE Trans Inform Theory 41(5):1487–1494

    Article  MATH  MathSciNet  Google Scholar 

  5. Ding P, Key JD (2000) Minimum-weight codewords as generators of generalized Reed-Muller codes. IEEE Trans Inform Theory 46(6):2152–2158

    Article  MATH  MathSciNet  Google Scholar 

  6. Hammons AR Jr, Kumar PV, Calderbank AR, Sloane NJA, Sole P (1994) The \({\mathbb{Z}_4}\) -linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans Inform Theory 40(2):301–319

    Article  MATH  MathSciNet  Google Scholar 

  7. Kantor WM (1982) Spreads, translation planes and Kerdock sets. I. II. SIAM J Algebra Discrete Methods 3(2–3):151–165, 308–318

    Google Scholar 

  8. Kantor WM (1995) Codes, quadratic forms and finite geometries. In: Calderbank AR (ed) Different aspects of coding theory. Proc Amer Math Soc Sympos Appl Math 50:153–177

  9. Kantor WM (1996) Orthogonal spreads and translation planes. In: Progress in algebraic combinatorics Vol. 24. Advanced Studies in Pure Mathematics, Mathematical Society of Japan, Japan, 227–242

  10. Kantor WM (2003) Commutative semifields and symplectic spreads. J Algebra 270(1):96–114

    Article  MATH  MathSciNet  Google Scholar 

  11. Kantor WM, Williams ME (2004) Symplectic semifield planes and \({\mathbb{Z}_4}\) -linear codes. Trans AMS 356(3):895–938

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaplansky I (1969) Linear algebra and geometry: a second course. Allyn and Bacon, Boston

    MATH  Google Scholar 

  13. Kerdock AM (1972) A class of low-rate nonlinear binary codes. Inform Control 20:182–187

    Article  MathSciNet  Google Scholar 

  14. Knuth DE (1965) Finite semifields and projective planes. J Algebra 2:182–217

    Article  MATH  MathSciNet  Google Scholar 

  15. Kuzmin AS, Nechaev AA (1992) A construction of noise stable codes using linear recurring sequences over Galois rings. Russ Math Surv 47(5):189–190

    Article  MathSciNet  Google Scholar 

  16. Kuzmin AS, Nechaev AA (1994) Linearly representable codes and the Kerdock code over an arbitrary Galois field of the characteristic 2. Russ Math Surv 49(5):183–184

    Article  MathSciNet  Google Scholar 

  17. Kuzmin AS, Nechaev AA (1999) Complete weight enumerators of generalized Kerdock code and linear recursive codes over Galois rings. In: Proceedings of the WCC’99 Workshop on Coding and Cryptography (January 11–14), Paris, France, pp 332–336

  18. Kuzmin AS, Nechaev AA (2001) Complete weights enumerators of generalized Kerdock code and related linear codes over Galois ring. Discrete Appl Math 111(1–2):117–137

    Article  MATH  MathSciNet  Google Scholar 

  19. Nechaev AA (1982) Trace function in Galois ring and noise stable codes. In: Proceeding of th V All-Union Symp. on Theory of Rings, Algebras and Modules, Novosibirsk, p 97 (in Russian)

  20. Nechaev AA (1989) Kerdock’s code in cyclic form. Diskret Mat 1(4):123–139

    MATH  MathSciNet  Google Scholar 

  21. Preparata FP (1968) A class of optimum nonlinear double-error correcting codes. Inform Control 13:378–400

    Article  MathSciNet  Google Scholar 

  22. Wood J (1993) Witt’s extension theorem for mod four valued quadratic forms. Trans Amer Math Soc 336(1):445–461

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Rúa.

Additional information

Communicated by R. Calderbank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, S., Martínez, C. & Rúa, I.F. Symplectic spread-based generalized Kerdock codes. Des Codes Crypt 42, 213–226 (2007). https://doi.org/10.1007/s10623-006-9031-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-006-9031-8

Keywords

AMS Classifications

Navigation