Skip to main content
Log in

Genome-wide comparative chromosome maps of Arvicola amphibius, Dicrostonyx torquatus, and Myodes rutilus

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The subfamily Arvicolinae consists of a great number of species with highly diversified karyotypes. In spite of the wide use of arvicolines in biological and medicine studies, the data on their karyotype structures are limited. Here, we made a set of painting probes from flow-sorted chromosomes of a male Palearctic collared lemming (Dicrostonyx torquatus, DTO). Together with the sets of painting probes made previously from the field vole (Microtus agrestis, MAG) and golden hamster (Mesocricetus auratus, MAU), we carried out a reciprocal chromosome painting between these three species. The three sets of probes were further hybridized onto the chromosomes of the Eurasian water vole (Arvicola amphibius) and northern red-backed vole (Myodes rutilus). We defined the diploid chromosome number in D. torquatus karyotype as 2n = 45 + Bs and showed that the system of sex chromosomes is X1X2Y1. The probes developed here provide a genomic tool-kit, which will help to investigate the evolutionary biology of the Arvicolinae rodents. Our results show that the syntenic association MAG1/17 is present not only in Arvicolinae but also in some species of Cricetinae; and thus, should not be considered as a cytogenetic signature for Arvicolinae. Although cytogenetic signature markers for the genera have not yet been found, our data provides insight into the likely ancestral karyotype of Arvicolinae. We conclude that the karyotypes of modern voles could have evolved from a common ancestral arvicoline karyotype (AAK) with 2n = 56 mainly by centric fusions and fissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AAM:

Arvicola amphibius

AOE:

Alexandromys oeconomus (here and further in the text, the species nomenclature is used in accordance with the latest checklist “The mammals of Russia: a taxonomic and geographic reference” (Pavlinov and Lissovsky 2012))

MRU:

Myodes rutilus

dist:

Distal

DTO:

Dicrostonyx torquatus

ENC:

Evolutionary new centromeres

FISH:

Fluorescence in situ hybridization

GTG-banding:

G-banding by trypsin using Giemsa

int:

Interstitial

ITS:

Interstitial telomeric sequences

MAG:

Microtus agrestis

MAU:

Mesocricetus auratus

prox:

Proximal

References

  • Abramson NI, Lebedev VS, Bannikova AA, Tesakov AS (2009a) Radiation events in the subfamily Arvicolinae (Rodentia): evidence from nuclear genes. Dokl Biol Sci 428:458–461

    Article  CAS  PubMed  Google Scholar 

  • Abramson NI, Lebedev VS, Tesakov AS, Bannikova AA (2009b) Supraspecies relationships in the subfamily (Rodentia, Cricetidae, Arvicolinae): unexpexted result of nuclear genes analysis. Mol Biol (Mosk) 43:897–909

    Article  CAS  Google Scholar 

  • Abramson NI, Golenishchev FN, Kostygov AYu, Tesakov AS (2011) Taxonomic interpretation of molecular-genetic cladogram for voles of the tribe Mocrotini (Arvicolinae, Rodentia) inferred from nuclear genes. In: Theriofauna of Russia and adjacement regions, 9th Congress of Theriological Society. KMK Sci. Press, Moscow, p. 7

  • Acosta MJ, Marchal JA, Fernandez-Espartero C et al (2010) Characterization of the satellite DNA Msat-160 from species of Terricola (Microtus) and Arvicola (Rodentia, Arvicolinae). Genetica 138:1085–1098

    Article  PubMed  Google Scholar 

  • Bakloushinskaya IY, Matveevsky SN, Romanenko SA et al (2012) A comparative analysis of the mole vole sibling species Ellobius tancrei and E. talpinus (Cricetidae, Rodentia) through chromosome painting and examination of synaptonemal complex structures in hybrids. Cytogenet Genome Res 136:199–207

    Article  PubMed  Google Scholar 

  • Bannikova AA, Lebedev VS, Lissovsky AA et al (2010) Molecular phylogeny and evolution of the Asian lineage of vole genus Microtus (Rodentia: Arvicolinae) inferred from mitochondrial cytochrome b sequence. Biol J Linn Soc 99:595–613

    Article  Google Scholar 

  • Borodin PM, Sablina OV, Rodionova MI (1995) Pattern of X-Y chromosome pairing in microtine rodents. Hereditas 123:17–23

    Article  CAS  PubMed  Google Scholar 

  • Carleton MD, Musser GG (2005) Subfamily Arvicolinae. In: Wilson E, Reeder D-AM (eds) Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, pp. 956--1039

  • Chaline J, Graf JD (1988) Phylogeny of the Arvicolidae (Rodentia)—biochemical and paleontological evidence. J Mammal 69:22–33

    Article  Google Scholar 

  • Chernyavsky FB, Kozlovsky AI (1980) Species status and history of the Arctic lemming (Dicrostonyx, Rodentia) of Wrangel Island. Zool Zh (in Russian) 59:266–273

    Google Scholar 

  • Conroy C, Cook JA (1999) MtDNA evidence for repeated pulses of speciation within arvicoline and murid rodents. J Mamm Evol 6:221–245

    Article  Google Scholar 

  • Cook JA, Runck AM, Conroy CJ (2004) Historical biogeography at the crossroads of the northern continents: molecular phylogenetics of red-backed voles (Rodentia: Arvicolinae). Mol Phylogenet Evol 30:767–777

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente R, Sanchez A, Marchal JA et al (2012) A synaptonemal complex-derived mechanism for meiotic segregation precedes the evolutionary loss of homology between sex chromosomes in arvicolid mammals. Chromosoma 121:433–446

    Article  PubMed  Google Scholar 

  • DeWoody JA, Chesser RK, Baker RJ (1999) A translocated mitochondrial cytochrome b pseudogene in voles (Rodentia: Microtus). J Mol Evol 48:380–382

    Article  CAS  PubMed  Google Scholar 

  • Fredga K (1983) Aberrant sex chromosome mechanisms in mammals. Evol asp Differ 23(Suppl):S23–30

    Google Scholar 

  • Fredga K, Fedorov V, Jarrell G, Jonsson L (1999) Genetic diversity in Arctic lemmings. Ambio 28:261--269

  • Galewski T, Tilak MK, Sanchez S et al (2006) The evolutionary radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evol Biol 6:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Gileva EA (1980) Chromosomal diversity and an aberrant genetic system of sex determination in the arctic lemming, Dicrostonyx-torquatus pallas (1779). Genetica 52–3:99–103

    Google Scholar 

  • Gileva EA (1983) A contrasted pattern of chromosome evolution in 2 genera of lemmings, Lemmus and Dicrostonyx (Mammalia, Rodentia). Genetica 60:173–179

    Article  Google Scholar 

  • Gileva EA (2004) The B chromosome system in the varying lemming Dicrostonyx torquatus pall., 1779 from natural and laboratory populations. Russ J Genet 40:1399–1406

    Article  CAS  Google Scholar 

  • Gileva EA, Chebotar NA (1979) Fertile XO males and females in the varying lemming, Dicrostonyx torquatus pall. 1779. Heredity 42:67–77

    Article  Google Scholar 

  • Graphodatsky AS, Sablina OV, Meyer MN et al (2000) Comparative cytogenetics of hamsters of the genus Calomyscus. Cytogenet Cell Genet 88:296–304

    Article  CAS  PubMed  Google Scholar 

  • Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG) n generated by PCR. Nucleic Acids Res 19:4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaarola M, Martinkova N, Gunduz I et al (2004) Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 33:647–663

    Article  CAS  PubMed  Google Scholar 

  • Lemskaya NA, Romanenko SA, Golenishchev FN et al (2010) Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). III. Karyotype relationships of ten Microtus species. Chromosome Res 18:459–471

    Article  CAS  PubMed  Google Scholar 

  • Li T, Wang J, Su W, Nie W, Yang F (2006) Karyotypic evolution of the family Sciuridae: inferences from the genome organizations of ground squirrels. Cytogenet Genome Res 112:270–276

    Article  CAS  PubMed  Google Scholar 

  • Maden BE, Dent CL, Farrell TE et al (1987) Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem J 246:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazurok NA, Rubtsova NV, Isaenko AA et al (2001) Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicolidae). Chromosome Res 9:107–120

    Article  CAS  PubMed  Google Scholar 

  • Modi WS (1987a) C-banding analyses and the evolution of heterochromatin among arvicolid rodents. J Mammal 68:704–714

    Article  Google Scholar 

  • Modi WS (1987b) Phylogenetic analyses of chromosomal banding-patterns among the Nearctic Arvicolidae (Mammalia, Rodentia). Syst Zool 36:109–136

    Article  Google Scholar 

  • Orlov VN, Bulatova NSh (1983) Comparative cytogenetics and karyosystematic of mammals. Nauka, Moscow (In russian)

  • Pavlinov IYa, Lissovsky AA (2012) The mammals of Russia: a taxonomic and geographic reference. In: Kalyakin MV (ed) Archives of zoological museum of Moscow state university. KMK Scientific Press Ltd, Moscow, pp. 1--604

  • Repenning CA (1990) Of mice and ice in the Late Pliocene of North-America. Arctic 43:314--323

  • Romanenko SA, Volobouev V (2012) Non-sciuromorph rodent karyotypes in evolution. Cytogenet Genome Res 137:233–245

    Article  CAS  PubMed  Google Scholar 

  • Romanenko SA, Perelman PL, Serdukova NA et al (2006) Reciprocal chromosome painting between three laboratory rodent species. Mamm Genome 17:1183–1192

    Article  PubMed  Google Scholar 

  • Romanenko SA, Sitnikova NA, Serdukova NA et al (2007) Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Chromosome Res 15:891–897

    Article  CAS  PubMed  Google Scholar 

  • Romanenko SA, Perelman PL, Trifonov VA, Graphodatsky AS (2012) Chromosomal evolution in Rodentia. Heredity (Edinb) 108:4–16

    Article  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 11:971–972

    Article  Google Scholar 

  • Sitnikova NA, Romanenko SA, O'Brien PC et al (2007) Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res 15:447–456

    Article  CAS  PubMed  Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A et al (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosom Cancer 4:257–263

    Article  CAS  PubMed  Google Scholar 

  • Triant DA, Dewoody JA (2006) Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences. Genetica 128:95–108

    Article  CAS  PubMed  Google Scholar 

  • Trifonov VA, Kosyakova N, Romanenko SA et al (2010) New insights into the karyotypic evolution in muroid rodents revealed by multicolor banding applying murine probes. Chromosom Res 18:265–275

    Article  CAS  Google Scholar 

  • Weimer J, Kiechle M, Arnold N (2000) FISH-microdissection (FISH-MD) analysis of complex chromosome rearrangements. Cytogenet Cell Genet 88:114–118

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652

    Article  CAS  PubMed  Google Scholar 

  • Yang F, O'Brien PC, Milne BS et al (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202

    Article  CAS  PubMed  Google Scholar 

  • Yannic G, Burri R, Malikov VG, Vogel P (2012) Systematics of snow voles (Chionomys, Arvicolinae) revisited. Mol Phylogenet Evol 62:806–815

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded in part by the MCB and SB RAS Programs, research grants of Russian Fund for Basic Research (No. 11-04-00673, No. 14-04-00451 (SAR); No. 14-04-31555 (NAL); No. 15-29-02384, No. 15-04-00962 (ASG)) and ZIN RAS (project No. 01201351185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana A. Romanenko.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Responsible Editor: Irina Solovei, PhD

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 74 kb)

ESM 2

(PDF 286 kb)

ESM 3

(XLS 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanenko, S.A., Lemskaya, N.A., Trifonov, V.A. et al. Genome-wide comparative chromosome maps of Arvicola amphibius, Dicrostonyx torquatus, and Myodes rutilus . Chromosome Res 24, 145–159 (2016). https://doi.org/10.1007/s10577-015-9504-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9504-6

Keywords

Navigation