Skip to main content
Log in

Functional analysis of Drosophila polytene chromosomes decompacted unit: the interband

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Differential compaction of the interphase chromosomes is important for proper functioning of the eukaryotic genome. Such non-uniform compaction is most easily observed in Drosophila salivary gland polytene chromosomes as a reproducible banding pattern. Functional mechanisms underlying the establishment and maintenance of the banding pattern remain unclear but have been hypothesized to involve transcription and chromatin insulators. We tested functional properties of DNA fragments from several transcriptionally inert interband regions that behave as autonomous decompacted units of polytene chromosomes. Our results suggest that, in the absence of transcription, the decondensed state of interband regions does not depend on the presence of insulator elements but instead correlates with the presence of transcriptional enhancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Adf-1:

alcohol dehydrogenase transcription factor 1

BEAF-32:

boundary element-associated factor of 32 kDa

DPE:

downstream promoter element

DREF:

(DNA replication-related element)-binding factor

EST:

expressed sequence tag

Inr:

initiator element

PCR:

polymerase chain reaction

Su(Hw):

suppressor of Hairy-wing

References

  • Barges S, Mihaly J, Galloni M et al (2000) The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 127:779–790

    PubMed  CAS  Google Scholar 

  • Belozerov VE, Majumder P, Shen P, Cai HN (2003) A novel boundary element may facilitate independent gene regulation in the Antennapedia complex of Drosophila. EMBO J 22:3113–3121

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  PubMed  CAS  Google Scholar 

  • Bushey AM, Dorman ER, Corces VG (2008) Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell 32:1–9

    Article  PubMed  CAS  Google Scholar 

  • Capelson M, Corces VG (2005) The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol Cell 20:105–116

    Article  PubMed  CAS  Google Scholar 

  • Crowley TE, Mathers PH, Meyerowitz EM (1984) A trans-acting regulatory product necessary for expression of the Drosophila melanogaster 68C glue gene cluster. Cell 39:149–156

    Article  PubMed  CAS  Google Scholar 

  • Cuvier O, Hart CM, Laemmli UK (1998) Identification of a class of chromatin boundary elements. Mol Cell Biol 18:7478–7486

    PubMed  CAS  Google Scholar 

  • Demakov S, Gortchakov A, Schwartz Y et al (2004) Molecular and genetic organization of Drosophila melanogaster polytene chromosomes: evidence for two types of interband regions. Genetica 122:311–324

    Article  PubMed  CAS  Google Scholar 

  • Emberly E, Blattes R, Schuettengruber B et al (2008) BEAF regulates cell-cycle genes through the controlled deposition of H3K9 methylation marks into its conserved dual-core binding sites. PLoS Biol 6:2896–2910

    Article  PubMed  CAS  Google Scholar 

  • England BP, Admon A, Tjian R (1992) Cloning of Drosophila transcription factor Adf-1 reveals homology to Myb oncoproteins. Proc Natl Acad Sci U S A 89:683–687

    Article  PubMed  CAS  Google Scholar 

  • Gerasimova TI, Corces VG (2001) Chromatin insulators and boundaries: effects on transcription and nuclear organization. Annu Rev Genet 35:193–208

    Article  PubMed  CAS  Google Scholar 

  • Gerasimova TI, Lei EP, Bushey AM, Corces VG (2007) Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila. Mol Cell 28:761–772

    Article  PubMed  CAS  Google Scholar 

  • Harrison DA, Gdula DA, Coyne RS, Corces VG (1993) A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. Genes Dev 7:1966–1978

    Article  PubMed  CAS  Google Scholar 

  • Hart CM, Cuvier O, Laemmli UK (1999) Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF. Chromosoma 108:375–383

    Article  PubMed  CAS  Google Scholar 

  • Hirose F, Yamaguchi M, Handa H, Inomata Y, Matsukage A (1993) Novel 8-base pair sequence (Drosophila DNA replication-related element) and specific binding factor involved in the expression of Drosophila genes for DNA polymerase alpha and proliferating cell nuclear antigen. J Biol Chem 268:2092–2099

    PubMed  CAS  Google Scholar 

  • Hyun J, Jasper H, Bohmann D (2005) DREF is required for efficient growth and cell cycle progression in Drosophila imaginal discs. Mol Cell Biol 25:5590–5598

    Article  PubMed  CAS  Google Scholar 

  • Kadonaga JT (2002) The DPE, a core promoter element for transcription by RNA polymerase II. Exp Mol Med 34:259–264

    PubMed  CAS  Google Scholar 

  • Kellum R, Schedl P (1991) A position-effect assay for boundaries of higher order chromosomal domains. Cell 64:941–950

    Article  PubMed  CAS  Google Scholar 

  • Kurshakova M, Maksimenko O, Golovnin A et al (2007) Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila. Mol Cell 27:332–338

    Article  PubMed  CAS  Google Scholar 

  • Majumder P, Cai HN (2003) The functional analysis of insulator interactions in the Drosophila embryo. Proc Natl Acad Sci U S A 100:5223–5228

    Article  PubMed  CAS  Google Scholar 

  • Mok EH, Smith HS, DiBartolomeis SM et al (2001) Maintenance of the DNA puff expanded state is independent of active replication and transcription. Chromosoma 110:186–196

    Article  PubMed  CAS  Google Scholar 

  • Muravyova E, Golovnin A, Gracheva E et al (2001) Loss of insulator activity by paired Su(Hw) chromatin insulators. Science 291:495–498

    Article  PubMed  CAS  Google Scholar 

  • Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134:74–84

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  PubMed  CAS  Google Scholar 

  • Saumweber H, Symmons P, Kabisch R, Will H, Bonhoeffer F (1980) Monoclonal antibodies against chromosomal proteins of Drosophila melanogaster: establishment of antibody producing cell lines and partial characterization of corresponding antigens. Chromosoma 80:253–275

    Article  PubMed  CAS  Google Scholar 

  • Schwartz YB, Demakov SA, Khimulev IF (1998) Cloning and analysis of DNA from interband regions 85D9/D10 and 86B4/B6 of Drosophila melanogaster polytene chromosomes. Genetika 34:1081–1089 (in Russian)

    PubMed  Google Scholar 

  • Semeshin VF, Demakov SA, Shloma VV, Vatolina TY, Gorchakov AA, Zhimulev IF (2008) Interbands behave as decompacted autonomous units in Drosophila melanogaster polytene chromosomes. Genetica 132:267–279

    Article  PubMed  CAS  Google Scholar 

  • Vasilyeva LA (2007) Statistics in biology, medicine and agriculture. Novosibirsk State University, Institute of cytology and genetics SB RAS, Novosibirsk (in Russian)

  • Vazquez J, Schedl P (2000) Deletion of an insulator element by the mutation facet-strawberry in Drosophila melanogaster. Genetics 155:1297–1311

    PubMed  CAS  Google Scholar 

  • Welshons WJ, Keppy DO (1981) The recombinational analysis of aberrations and the position of the notch locus on the polytene chromosome of Drosophila. Mol Gen Genet 181:319–324

    Article  PubMed  CAS  Google Scholar 

  • Winegarden NA, Wong KS, Sopta M, Westwood JT (1996) Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp 70 gene transcription in Drosophila. J Biol Chem 271:26971–26980

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Hayashi Y, Nishimoto Y, Hirose F, Matsukage A (1995) A nucleotide sequence essential for the function of DRE, a common promoter element for Drosophila DNa replication-related genes. J Biol Chem 270:15808–15814

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Hart CM, Laemmli UK (1995) Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell 81:879–889

    Article  PubMed  CAS  Google Scholar 

  • Zhimulev IF, Belyaeva ES, Semeshin VF et al (2004) Polytene chromosomes: 70 years of genetic research. Int Rev Cytol 241:203–275

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Pavel Georgiev and Ekaterina Savitskaya for providing us with fly stocks and antibodies against Adf-1 and to Ulrich K. Laemmli for antibodies against BEAF-32. We thank Stepan Belyakin for helpful discussion of the results and comments on the manuscript.

This work was supported by the Russian Foundation for Basic Research, grants nos. 06.04.48387 and 09.04.00409a; the program Leading Scientific Schools, grants nos. 918.2003.4, 942.2006.4, and 5104.2008.4; Government contracts nos. 02.512.11.2065 and 02.512.11.2145; Molecular and Cellular Biology program, grants nos. 10.1 and 10.3 from RAS and Interdisciplinary integrational project from SB RAS no. 45.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Berkaeva.

Additional information

Responsible Editor: Herbert Macgregor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkaeva, M., Demakov, S., Schwartz, Y.B. et al. Functional analysis of Drosophila polytene chromosomes decompacted unit: the interband. Chromosome Res 17, 745–754 (2009). https://doi.org/10.1007/s10577-009-9065-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9065-7

Keywords

Navigation