Skip to main content
Log in

Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The possibility that giant extrasolar planets could have small Trojan co-orbital companions has been examined in the literature from both viewpoints of the origin and dynamical stability of such a configuration. Here we aim to investigate the dynamics of hypothetical small Trojan exoplanets in domains of secondary resonances embedded within the tadpole domain of motion. To this end, we consider the limit of a massless Trojan companion of a giant planet. Without other planets, this is a case of the elliptic restricted three body problem (ERTBP). The presence of additional planets (hereafter referred to as the restricted multi-planet problem, RMPP) induces new direct and indirect secular effects on the dynamics of the Trojan body. The paper contains a theoretical and a numerical part. In the theoretical part, we develop a Hamiltonian formalism in action-angle variables, which allows us to treat in a unified way resonant dynamics and secular effects on the Trojan body in both the ERTBP or the RMPP. In both cases, our formalism leads to a decomposition of the Hamiltonian in two parts, \(H=H_b+H_{sec}\). \(H_b\), called the basic model, describes resonant dynamics in the short-period (epicyclic) and synodic (libration) degrees of freedom, while \(H_{sec}\) contains only terms depending trigonometrically on slow (secular) angles. \(H_b\) is formally identical in the ERTBP and the RMPP, apart from a re-definition of some angular variables. An important physical consequence of this analysis is that the slow chaotic diffusion along resonances proceeds in both the ERTBP and the RMPP by a qualitatively similar dynamical mechanism. We found that this is best approximated by the paradigm of ‘modulational diffusion’. In the paper’s numerical part, we then focus on the ERTBP in order to make a detailed numerical demonstration of the chaotic diffusion process along resonances. Using color stability maps, we first provide a survey of the resonant web for characteristic mass parameter values of the primary, in which the secondary resonances from 1:5 to 1:12 (ratio of the short over the synodic period), as well as their transverse resonant multiplets, appear. We give numerical examples of diffusion of weakly chaotic orbits in the resonant web. We finally make a statistics of the escaping times in the resonant domain, and find power-law tails of the distribution of the escaping times for the slowly diffusing chaotic orbits. Implications of resonant dynamics in the search for Trojan exoplanets are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. The variables \(u,v\) proposed here are similar to the variables \(X,Y\) defined in equations (24) or (25) of Beaugé and Roig (2001), via a so-called ‘Jupp transformation’. Note, however, the following difference: Our Hamiltonian \(\overline{H_b}\), analogous to Beaugé and Roig’s \(F_0\), is, nevertheless, labeled also by \(e_0'\) (or, simply \(e'\) in the ERTBP). Thus, it is not the averaged (over fast angles) Hamiltonian of the circular RTBP. From a physical point of view, this expresses the possibility to find an integrable approximation to synodic motions even when \(e'\ne 0\). Accordingly, \(Y_p\) in our formalism, which is analogous to Beaugé and Roig’s \(W\), provides a label for the proper eccentricity rather than simply the eccentricity of the test particle. Again, this expresses the fact that the former, but not the latter, is nearly constant even when \(e'\ne 0\).

  2. A comparison between the terminology for resonances employed here and in Robutel and Gabern (2006, referring to the case of Jupiter’s Trojan asteroids), is in order. Robutel and Gabern distinguish four ‘families’ of resonances. Two of these, however, (Families II and IV) involve the frequencies \(\nu _{1,2}=2n_{Saturn}-n_{Jupiter}\) and \(\nu _{2,5}=5n_{Saturn}-2n_{Jupiter}\), which, due to the Great Inequality, both play an important role in the dynamics of Jupiter’s Trojan swarm. Also, Family III involves the asteroids’ secular frequency \(s\), thus it applies only to inclined motions. Here we consider systems with a rather planar geometry and far from mean motion resonances, for which only Family I-type resonances of Robutel and Gabern are relevant. Their \(\nu \) corresponds to our synodic frequency \(\omega _s\). Also, they use \(n_5\) (the mean motion of Jupiter \(=\) 1 in our units), while we use \(\omega _f=n_5-g=1-g\), which, as explained above, is the frequency of epicyclic oscillations of the Trojan body. Thus, The Family I of Robutel and Gabern corresponds to our definition (25) if we set \(m_f=-1\), \(m_s\equiv p\), \(m\equiv q-1\), \(m'\equiv q_5\), \(m_1\equiv q_6\). We emphasize, however, that due to the particular values of the frequencies for the Trojan swarm, Family I of Robutel and Gabern has the restrictions \(m_f=-1\), \(m+m'+m_1=0\). On the contrary, such restriction is not present in our computations. On the other hand, our ’secular’ resonances require both \(m_s\) and \(m_f\) to be equal to zero. Thus, from a dynamical point of view, they are qualitatively closer to their Family III.

References

  • Arnold, V.I.: Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokt. 5, 581–585 (1964)

    Google Scholar 

  • Beaugé, C., Roig, F.: A semianalytical model for the motion of the Trojan asteroids: proper elements and families. Icarus 153, 391–415 (2001)

    Article  ADS  Google Scholar 

  • Beaugé, C., Sándor, Z., Érdi, B., Süli, A.: Co-orbital terrestrial planets in exoplanetary systems: a formation scenario. Astron. Astrophys. 463, 359–367 (2007)

    Article  ADS  Google Scholar 

  • Brown, E.W., Shook, C.A.: Planetary Theory, p. 256. Cambridge University Press, New York (1964)

    Google Scholar 

  • Celletti, A., Giorgilli, A.: On the stability of the Lagrangian points in the spatial restricted problem of three bodies. Celest. Mech. Dyn. Astron. 50, 31–58 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Chirikov, B.V., Lieberman, M.A., Shepelyansky, D.L., Vivaldi, F.M.: A theory of modulational diffusion. Phys. D 14, 289–304 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Cresswell, P., Nelson, R.P.: On the growth and stability of Trojan planets. Astron. Astrophys. 493, 1141–1147 (2009)

    Article  ADS  MATH  Google Scholar 

  • Deprit, A.: Limiting orbits around the equilateral centers of libration. Astron. J. 71, 77–87 (1966)

    Article  ADS  Google Scholar 

  • Deprit, A., Rabe, E.: Periodic trojan orbits for the resonances \(1/12\). Astron. J. 74, 317–320 (1969)

    Article  ADS  Google Scholar 

  • Deprit, A., Price, J.F.: L’espace de phase autour de \(L_4\) pour la résonance interne \(1/3\). Astron. Astrophys. 1, 427–430 (1969)

    ADS  MathSciNet  Google Scholar 

  • Deprit, A., Henrard, J.: Sur les orbites périodiques issues de \(L_4\) à la résonance interne \(1/4\). Astron. Astrophys. 3, 88–93 (1969)

    ADS  Google Scholar 

  • Ding, M., Bountis, T., Ott, E.: Algebraic escape in higher dimensional Hamiltonian systems. Phys. Lett. A 151, 395–400 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • Dobrovolskis, A.: Effects of Trojan exoplanets on the reflex motions of their parent stars. Icarus 226, 1636–1641 (2013)

    ADS  Google Scholar 

  • Dullin, H.R., Worthington, J.I.: The vanishing twist in the restricted three body problem, arXiv:1309.1280 [math-ph] (2013)

  • Dvorak, R., Pilat-Lohinger, E., Schwarz, R., Freistetter, F.: Extrasolar Trojan planets close to habitable zones. Astron. Astrophys. 426, 37–40 (2004)

    Article  ADS  Google Scholar 

  • Efthymiopoulos, C., Contopoulos, G., Voglis, N., Dvorak, R.: Stickiness and Cantori. J. Phys. A Math. Gen. 30, 8167–8186 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Efthymiopoulos, C., Sándor, Z.: Optimized Nekhoroshev estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion. MNRAS 364, 253–271 (2005)

    Article  ADS  Google Scholar 

  • Efthymiopoulos, C.: High order normal form stability estimates for co-orbital motion. Celest. Mech. Dyn. Astron. 117, 101–112 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Érdi, B.: Long periodic perturbations of Trojan asteriods. Celest. Mech. Dyn. Astron. 43, 303–308 (1988)

    Article  MATH  Google Scholar 

  • Érdi, B.: The Trojan problem. Celest. Mech. Dyn. Astron. 65, 149–164 (1997)

    Article  MATH  Google Scholar 

  • Érdi, B., Sándor, Z.: Stability of co-orbital motion in exoplanetary systems. Celest. Mech. Dyn. Astron. 92, 113–121 (2005)

    Article  ADS  MATH  Google Scholar 

  • Érdi, B., Nagy, I., Sándor, Z., Süli, A., Fröhlich, G.: Secondary resonances of co-orbital motions. MNRAS 381, 33–40 (2007)

    Article  ADS  Google Scholar 

  • Érdi, B., Forgács-Dajka, E., Nagy, I., Rajnai, R.: A parametric study of stability and resonances around \(L_4\) in the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 104, 145–158 (2009)

    Article  ADS  MATH  Google Scholar 

  • Froeschlé, C., Guzzo, M., Lega, E.: Graphical evolution of the Arnold web: from order to chaos. Science 289, 2108–2110 (2000)

    Article  ADS  Google Scholar 

  • Funk, B., Schwarz, R., Süli, A., Érdi, B.: On the stability of possible Trojan planets in the habitable zone: an application to the systems HB 147513 and HD 210277. MNRAS 423, 2082–3074 (2012)

    Article  Google Scholar 

  • Gabern, F., Jorba, A., Locatelli, U.: On the construction of the Kolmogorov normal form for the Trojan asteroids. Nonlinearity 18, 1705–1734 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Garfinkel, B.: Theory of the Trojan asteriods, Part I. Astron. J. 85, 368–379 (1977)

    Article  ADS  Google Scholar 

  • Giorgilli, A., Skokos, Ch.: On the stability of the Trojan asteroids. Astron. Astrophys 317, 254–261 (1997)

    ADS  Google Scholar 

  • Giuppone, C.A., Benítez-Llambay, P., Beaugé, C.: Origin and detectability of coorbital planets from radial velocity data. MNRAS 421, 356–368 (2012)

    ADS  Google Scholar 

  • Guzzo, M., Lega, E.: Evolution of the tangent vectors and localization of the stable and unstable manifolds of hyperbolic orbits by Fast Lyapunov Indicators, arXiv:1307.6731 (2013)

  • Haghighipour, N., Capen, S., Hinse, T.: Detection of Earth-mass and super-Earth Trojan planets using transit timing variation method. Cel. Mech. Dyn. Astron. 117, 75–89 (2013)

    Article  ADS  Google Scholar 

  • Kovács, T., Érdi, B.: Transient chaos in the Sitnikov problem. Cel. Mech. Dyn. Astron. 105, 289–304 (2009)

    Article  ADS  MATH  Google Scholar 

  • Lai, Y.C., Ding, M., Grebogi, C., Blümel, R.: Algebraic decay and fluctuations of the decay exponent in Hamiltonian systems. Phys. Rec. A 46, 4661–4669 (1992)

    Article  ADS  Google Scholar 

  • Laskar, J.: The chaotic motion of the solar system: a numerical estimate for the size od the chaotic zones. Icarus 88, 266–291 (1990)

    Article  ADS  Google Scholar 

  • Laughlin, G., Chambers, J.: Extrasolar Trojans: the viability and detectability of planets in the 1:1 resonance. Astroph. J. 124, 592–600 (2002)

    ADS  Google Scholar 

  • Levison, H., Shoemaker, E.M., Shoemaker, C.S.: Dynamical evolution of Jupiter’s Trojan asteroids. Nature 385, 42–44 (1997)

    Article  ADS  Google Scholar 

  • Libert, A.S., Sansottera, M.: On the extension of the Laplace-Lagrange secular theory to order two in the masses for extrasolar systems. Cel. Mech. Dyn. Astron. 117, 149–168 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Lohinger, E., Dvorak, R.: Stability regions around \(L_4\) in the elliptic restricted problem. Astron. Astrophys. 280, 683–687 (1993)

    ADS  Google Scholar 

  • Lhotka, Ch., Efthymiopoulos, C., Dvorak, R.: Nekhoroshev stability at \(L_4\) or \(L_5\) in the elliptic-restricted three-body problem—application to Trojan asteroids. MNRAS 384, 1165–1177 (2008)

    Article  ADS  Google Scholar 

  • Lyra, W., Johansen, A., Klahr, H., Piskunov, N.: Standing on the shoulders of giants. Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. Astron. Astrophys. 493, 1125–1139 (2009)

    Article  ADS  Google Scholar 

  • Marzari, F., Tricarino, P., Scholl, H.: Stability of Jupiter Trojans investigated using frequency map analysis: the MATROS project. MNRAS 345, 1091–1100 (2003)

    Article  ADS  Google Scholar 

  • Meiss, J.D.: Symplectic maps, variation principles and transport. Rev. Mod. Phys. 64, 795–848 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Menou, K., Tabachnik, S.: Dynamical habitability of known extrasolar planetary systems. Astroph. J. 583, 473–488 (2003)

    Article  ADS  Google Scholar 

  • Milani, A.: The Trojan asteroid belt: proper elements, stability, chaos and families. Celest. Mech. Dyn. Astron. 57, 59–94 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Morbidelli, A.: Modern Celestial Mechanics. Aspects of Solar System Dynamics. Taylor and Francis, London (2002)

    Google Scholar 

  • Morais, M.H.M.: Hamiltonian formulation of the secular theory for Trojan-type motion. Astron. Astrophys. 369, 677–689 (2001)

    Article  ADS  MATH  Google Scholar 

  • Namouni, F., Murray, C.D.: The effect of eccentricity and inclination on the motion near the lagrangian points \(L_4\) and \(L_5\). Celest. Mech. Dyn. Astron. 76, 131–138 (2000)

    Article  ADS  MATH  Google Scholar 

  • Rabe, E.: Third-order stability of the Long-period Trojan librations. Astron. J. 72, 10–17 (1967)

    Article  ADS  Google Scholar 

  • Robutel, P., Gabern, F., Jorba, A.: The observed Trojans and the global dynamics around the lagrangian points of the Sun-Jupiter system. Celest. Mech. Dyn. Astron. 92, 53–69 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids—I. Long-term stability and diffusion. MNRAS 372, 1463–1482 (2006)

    Article  ADS  Google Scholar 

  • Robutel, P., Bodossian, J.: The resonant structure of Jupiter’s Trojan asteroids—II. What happens for different configurations of the planetary systems. MNRAS 399, 69–87 (2009)

    Article  ADS  Google Scholar 

  • Schwarz, R., Dvorak, R., Süli, A., Érdi, B.: Survey of the stability region of hypothetical habitable Trojan planets. Astron. Astrophys. 474, 1023–11029 (2007)

    Article  ADS  Google Scholar 

  • Tsiganis, K., Varvoglis, H., Dvorak, R.: Chaotic diffusion and effective detectability of Jupiter Trojans. Celest. Mech. Dyn. Astron. 92, 71–87 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professors Z. Knezevic and U. Locatelli for their useful remarks, and the anonymous referees for helping to improve the original manuscript. R.I.P. is supported by the Astronet-II Marie Curie Training Network (PITN-GA-2011-289240). C.E. acknowledges support by the Grant 200/815 of the Research Committee of the Academy of Athens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío Isabel Páez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 251 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Páez, R.I., Efthymiopoulos, C. Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems. Celest Mech Dyn Astr 121, 139–170 (2015). https://doi.org/10.1007/s10569-014-9591-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9591-2

Keywords

Navigation