Skip to main content

Advertisement

Log in

Ribosomal proteins as novel players in tumorigenesis

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sollner-Webb, B., & Mougey, E. B. (1991). News from the nucleolus: rRNA gene expression. Trends in Biochemical Sciences, 16(2), 58–62.

    PubMed  Google Scholar 

  2. Uechi, T., Tanaka, T., & Kenmochi, N. (2001). A complete map of the human ribosomal protein genes: assignment of 80 genes to the cytogenetic map and implications for human disorders. Genomics, 72(3), 223–230.

    PubMed  CAS  Google Scholar 

  3. Fatica, A., & Tollervey, D. (2002). Making ribosomes. Current Opinion in Cell Biology, 14(3), 313–318.

    PubMed  CAS  Google Scholar 

  4. Bortoluzzi, S., d'Alessi, F., Romualdi, C., & Danieli, G. A. (2001). Differential expression of genes coding for ribosomal proteins in different human tissues. Bioinformatics, 17(12), 1152–1157.

    PubMed  CAS  Google Scholar 

  5. Ishii, K., Washio, T., Uechi, T., Yoshihama, M., Kenmochi, N., & Tomita, M. (2006). Characteristics and clustering of human ribosomal protein genes. BMC Genomics, 737.

  6. Shen, D. W., Liang, X. J., Suzuki, T., & Gottesman, M. M. (2006). Identification by functional cloning from a retroviral cDNA library of cDNAs for ribosomal protein L36 and the 10-kDa heat shock protein that confer cisplatin resistance. Molecular Pharmacology, 69(4), 1383–1388.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Du, J., Shi, Y., Pan, Y., Jin, X., Liu, C., Liu, N., et al. (2005). Regulation of multidrug resistance by ribosomal protein l6 in gastric cancer cells. Cancer Biology and Therapy, 4(2), 242–247.

    PubMed  CAS  Google Scholar 

  8. Kim, J., Chubatsu, L. S., Admon, A., Stahl, J., Fellous, R., & Linn, S. (1995). Implication of mammalian ribosomal protein S3 in the processing of DNA damage. Journal of Biological Chemistry, 270(23), 13620–13629.

    PubMed  CAS  Google Scholar 

  9. Fisher, E. M., Beer-Romero, P., Brown, L. G., Ridley, A., McNeil, J. A., Lawrence, J. B., et al. (1990). Homologous ribosomal protein genes on the human X and Y chromosomes: escape from X inactivation and possible implications for turner syndrome. Cell, 63(6), 1205–1218.

    PubMed  CAS  Google Scholar 

  10. Poddar, D., Basu, A., Baldwin, W. M., 3rd, Kondratov, R. V., Barik, S., & Mazumder, B. (2013). An extraribosomal function of ribosomal protein L13a in macrophages resolves inflammation. Journal of Immunology, 190(7), 3600–3612.

    CAS  Google Scholar 

  11. Derenzini, M., Trere, D., Pession, A., Govoni, M., Sirri, V., & Chieco, P. (2000). Nucleolar size indicates the rapidity of cell proliferation in cancer tissues. Journal of Pathology, 191(2), 181–186.

    PubMed  CAS  Google Scholar 

  12. Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M., Angelo, M., McLaughlin, M. E., et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415(6870), 436–442.

    PubMed  CAS  Google Scholar 

  13. Zhang, L., Zhou, W., Velculescu, V. E., Kern, S. E., Hruban, R. H., Hamilton, S. R., et al. (1997). Gene expression profiles in normal and cancer cells. Science, 276(5316), 1268–1272.

    PubMed  CAS  Google Scholar 

  14. Bee, A., Ke, Y., Forootan, S., Lin, K., Beesley, C., Forrest, S. E., et al. (2006). Ribosomal protein l19 is a prognostic marker for human prostate cancer. Clinical Cancer Research, 12(7 Pt 1), 2061–2065.

    PubMed  CAS  Google Scholar 

  15. Huang, X. P., Zhao, C. X., Li, Q. J., Cai, Y., Liu, F. X., Hu, H., et al. (2006). Alteration of RPL14 in squamous cell carcinomas and preneoplastic lesions of the esophagus. Gene, 366(1), 161–168.

    PubMed  CAS  Google Scholar 

  16. Clemens, M. J. (2004). Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene, 23(18), 3180–3188.

    PubMed  CAS  Google Scholar 

  17. Pestov, D. G., Strezoska, Z., & Lau, L. F. (2001). Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Molecular and Cellular Biology, 21(13), 4246–4255.

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Boon, K., Caron, H. N., van Asperen, R., Valentijn, L., Hermus, M. C., van Sluis, P., et al. (2001). N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. Embo J, 20(6), 1383–1393.

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Williams, G. T., & Farzaneh, F. (2013). Are snoRNAs and snoRNA host genes new players in cancer? Nature Reviews Cancer, 12(2), 84–88.

    Google Scholar 

  20. Dragon, F., Gallagher, J. E., Compagnone-Post, P. A., Mitchell, B. M., Porwancher, K. A., Wehner, K. A., et al. (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature, 417(6892), 967–970.

    PubMed  CAS  Google Scholar 

  21. Su, H., Xu, T., Ganapathy, S., Shadfan, M., Long, M., Huang, T. H., et al. (2013). Elevated snoRNA biogenesis is essential in breast cancer. Oncogene. doi:10.1038/onc.2013.89.

    Google Scholar 

  22. Laferte, A., Favry, E., Sentenac, A., Riva, M., Carles, C., & Chedin, S. (2006). The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes and Development, 20(15), 2030–2040.

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Derenzini, M., Trere, D., Pession, A., Montanaro, L., Sirri, V., & Ochs, R. L. (1998). Nucleolar function and size in cancer cells. American Journal of Pathology, 152(5), 1291–1297.

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Yuan, X., Zhao, J., Zentgraf, H., Hoffmann-Rohrer, U., & Grummt, I. (2002). Multiple interactions between RNA polymerase I, TIF-IA and TAF(I) subunits regulate preinitiation complex assembly at the ribosomal gene promoter. EMBO Reports, 3(11), 1082–1087.

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Zhao, J., Yuan, X., Frodin, M., & Grummt, I. (2003). ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Molecular Cell, 11(2), 405–413.

    PubMed  CAS  Google Scholar 

  26. Montanaro, L., Mazzini, G., Barbieri, S., Vici, M., Nardi-Pantoli, A., Govoni, M., et al. (2007). Different effects of ribosome biogenesis inhibition on cell proliferation in retinoblastoma protein- and p53-deficient and proficient human osteosarcoma cell lines. Cell Proliferation, 40(4), 532–549.

    PubMed  CAS  Google Scholar 

  27. Drygin, D., Lin, A., Bliesath, J., Ho, C. B., O'Brien, S. E., Proffitt, C., et al. (2011). Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Research, 71(4), 1418–1430.

    PubMed  CAS  Google Scholar 

  28. Strezoska, Z., Pestov, D. G., & Lau, L. F. (2000). Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis. Molecular and Cellular Biology, 20(15), 5516–5528.

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Jouffe, C., Cretenet, G., Symul, L., Martin, E., Atger, F., Naef, F., et al. (2013). The circadian clock coordinates ribosome biogenesis. PLoS Biology, 11(1), e1001455.

    PubMed Central  PubMed  CAS  Google Scholar 

  30. De Benedetti, A., & Rhoads, R. E. (1990). Overexpression of eukaryotic protein synthesis initiation factor 4E in HeLa cells results in aberrant growth and morphology. Proceedings of the National Academy of Sciences of the United States of America, 87(21), 8212–8216.

    PubMed Central  PubMed  Google Scholar 

  31. Koromilas, A. E., Lazaris-Karatzas, A., & Sonenberg, N. (1992). MRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO Journal, 11(11), 4153–4158.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Svitkin, Y. V., Herdy, B., Costa-Mattioli, M., Gingras, A. C., Raught, B., & Sonenberg, N. (2005). Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Molecular and Cellular Biology, 25(23), 10556–10565.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 136(4), 731–745.

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Jopling, C. L., Spriggs, K. A., Mitchell, S. A., Stoneley, M., & Willis, A. E. (2004). L-Myc protein synthesis is initiated by internal ribosome entry. RNA, 10(2), 287–298.

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Yang, D. Q., Halaby, M. J., & Zhang, Y. (2006). The identification of an internal ribosomal entry site in the 5′-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene, 25(33), 4613–4619.

    PubMed  CAS  Google Scholar 

  36. Chapman, M. A., Lawrence, M. S., Keats, J. J., Cibulskis, K., Sougnez, C., Schinzel, A. C., et al. (2011). Initial genome sequencing and analysis of multiple myeloma. Nature, 471(7339), 467–472.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Scheid, M. P., & Woodgett, J. R. (2003). Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Letters, 546(1), 108–112.

    PubMed  CAS  Google Scholar 

  38. Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S. M., Garcia-Echeverria, C., et al. (2009). The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 268–273.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. James, M. J., & Zomerdijk, J. C. (2004). Phosphatidylinositol 3-kinase and mTOR signaling pathways regulate RNA polymerase I transcription in response to IGF-1 and nutrients. Journal of Biological Chemistry, 279(10), 8911–8918.

    PubMed  CAS  Google Scholar 

  40. Zhu, J., Blenis, J., & Yuan, J. (2008). Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6584–6589.

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Reviews Cancer, 2(7), 489–501.

    PubMed  CAS  Google Scholar 

  42. Yin, Y., & Shen, W. H. (2008). PTEN: a new guardian of the genome. Oncogene, 27(41), 5443–5453.

    PubMed  CAS  Google Scholar 

  43. Zhang, C., Comai, L., & Johnson, D. L. (2005). PTEN represses RNA polymerase I transcription by disrupting the SL1 complex. Molecular and Cellular Biology, 25(16), 6899–6911.

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Toschi, A., Lee, E., Xu, L., Garcia, A., Gadir, N., & Foster, D. A. (2009). Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Molecular and Cellular Biology, 29(6), 1411–1420.

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Hannan, K. M., Brandenburger, Y., Jenkins, A., Sharkey, K., Cavanaugh, A., Rothblum, L., et al. (2003). MTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Molecular and Cellular Biology, 23(23), 8862–8877.

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Mayer, C., & Grummt, I. (2006). Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene, 25(48), 6384–6391.

    PubMed  CAS  Google Scholar 

  47. Innes, F., Ramsbottom, B., & White, R. J. (2006). A test of the model that RNA polymerase III transcription is regulated by selective induction of the 110 kDa subunit of TFIIIC. Nucleic Acids Research, 34(11), 3399–3407.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Shor, B., Wu, J., Shakey, Q., Toral-Barza, L., Shi, C., Follettie, M., et al. (2010). Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. Journal of Biological Chemistry, 285(20), 15380–15392.

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Honma, Y., Kitamura, A., Shioda, R., Maruyama, H., Ozaki, K., Oda, Y., et al. (2006). TOR regulates late steps of ribosome maturation in the nucleoplasm via Nog1 in response to nutrients. Embo J, 25(16), 3832–3842.

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Castellvi, J., Garcia, A., Rojo, F., Ruiz-Marcellan, C., Gil, A., Baselga, J., et al. (2006). Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer, 107(8), 1801–1811.

    PubMed  CAS  Google Scholar 

  51. Raught, B., Peiretti, F., Gingras, A. C., Livingstone, M., Shahbazian, D., Mayeur, G. L., et al. (2004). Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO Journal, 23(8), 1761–1769.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Magnuson, B., Ekim, B., & Fingar, D. C. (2012). Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochemical Journal, 441(1), 1–21.

    PubMed  CAS  Google Scholar 

  53. Bjornsti, M. A., & Houghton, P. J. (2004). The TOR pathway: a target for cancer therapy. Nature Reviews Cancer, 4(5), 335–348.

    PubMed  CAS  Google Scholar 

  54. Wang, H. D., Trivedi, A., & Johnson, D. L. (1998). Regulation of RNA polymerase I-dependent promoters by the hepatitis B virus X protein via activated Ras and TATA-binding protein. Molecular and Cellular Biology, 18(12), 7086–7094.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Felton-Edkins, Z. A., Fairley, J. A., Graham, E. L., Johnston, I. M., White, R. J., & Scott, P. H. (2003). The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB. EMBO Journal, 22(10), 2422–2432.

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Miluzio, A., Beugnet, A., Grosso, S., Brina, D., Mancino, M., Campaner, S., et al. (2011). Impairment of cytoplasmic eIF6 activity restricts lymphomagenesis and tumor progression without affecting normal growth. Cancer Cell, 19(6), 765–775.

    PubMed  CAS  Google Scholar 

  57. Lee, T., Yao, G., Nevins, J., & You, L. (2008). Sensing and integration of Erk and PI3K signals by Myc. PLoS Computational Biology, 4(2), e1000013.

    PubMed Central  PubMed  Google Scholar 

  58. Rajasekhar, V. K., Viale, A., Socci, N. D., Wiedmann, M., Hu, X., & Holland, E. C. (2003). Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Molecular Cell, 12(4), 889–901.

    PubMed  CAS  Google Scholar 

  59. Bos, J. L. (1989). RAS oncogenes in human cancer: a review. Cancer Research, 49(17), 4682–4689.

    PubMed  CAS  Google Scholar 

  60. Di Nicolantonio, F., Arena, S., Tabernero, J., Grosso, S., Molinari, F., Macarulla, T., et al. (2010). Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. Journal of Clinical Investigation, 120(8), 2858–2866.

    PubMed Central  PubMed  Google Scholar 

  61. Schmidt, E. V. (2004). The role of c-myc in regulation of translation initiation. Oncogene, 23(18), 3217–3221.

    PubMed  CAS  Google Scholar 

  62. Grandori, C., Gomez-Roman, N., Felton-Edkins, Z. A., Ngouenet, C., Galloway, D. A., Eisenman, R. N., et al. (2005). c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biology, 7(3), 311–318.

    PubMed  CAS  Google Scholar 

  63. Gomez-Roman, N., Felton-Edkins, Z. A., Kenneth, N. S., Goodfellow, S. J., Athineos, D., Zhang, J., et al. (2006). Activation by c-Myc of transcription by RNA polymerases I, II and III. Biochem Soc Symp (73), 141–154. doi:http://www.ncbi.nlm.nih.gov/pubmed/16626295

  64. Kenneth, N. S., Ramsbottom, B. A., Gomez-Roman, N., Marshall, L., Cole, P. A., & White, R. J. (2007). TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proceedings of the National Academy of Sciences of the United States of America, 104(38), 14917–14922.

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Poortinga, G., Hannan, K. M., Snelling, H., Walkley, C. R., Jenkins, A., Sharkey, K., et al. (2004). MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO Journal, 23(16), 3325–3335.

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Schlosser, I., Holzel, M., Murnseer, M., Burtscher, H., Weidle, U. H., & Eick, D. (2003). A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Research, 31(21), 6148–6156.

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Holzel, M., Rohrmoser, M., Schlee, M., Grimm, T., Harasim, T., Malamoussi, A., et al. (2005). Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. Journal of Cell Biology, 170(3), 367–378.

    PubMed Central  PubMed  Google Scholar 

  68. Ruggero, D., Montanaro, L., Ma, L., Xu, W., Londei, P., Cordon-Cardo, C., et al. (2004). The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Medicine, 10(5), 484–486.

    PubMed  CAS  Google Scholar 

  69. Pourdehnad, M., Truitt, M. L., Siddiqi, I. N., Ducker, G. S., Shokat, K. M., & Ruggero, D. (2013). Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proceedings of the National Academy of Sciences of the United States of America, 110(29), 11988–11993.

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Challagundla, K. B., Sun, X. X., Zhang, X., DeVine, T., Zhang, Q., Sears, R. C., et al. (2011). Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress. Molecular and Cellular Biology, 31(19), 4007–4021.

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Dai, M., Sun, X., & Lu, H. (2010). Ribosomal protein L11 associates with c-Myc at 5S rRNA and tRNA genes and regulates their expression. Journal of Biological Chemistry, 285.

  72. Zhou, X., Hao, Q., Liao, J., Zhang, Q., & Lu, H. (2013). Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene, 32(3), 388–396.

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Zhou, X., Hao, Q., Liao, J. M., Liao, P., & Lu, H. (2013). Ribosomal protein S14 negatively regulates c-Myc activity. Journal of Biological Chemistry. doi:10.1074/jbc.M112.445122.

    Google Scholar 

  74. Kim, S., Li, Q., Dang, C. V., & Lee, L. A. (2000). Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11198–11202.

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Barna, M., Pusic, A., Zollo, O., Costa, M., Kondrashov, N., Rego, E., et al. (2008). Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature, 456(7224), 971–975.

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Dai, M. S., Arnold, H., Sun, X. X., Sears, R., & Lu, H. (2007). Inhibition of c-Myc activity by ribosomal protein L11. EMBO Journal, 26(14), 3332–3345.

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Wanzel, M., Russ, A. C., Kleine-Kohlbrecher, D., Colombo, E., Pelicci, P. G., & Eilers, M. (2008). A ribosomal protein L23-nucleophosmin circuit coordinates Mizl function with cell growth. Nature Cell Biology, 10(9), 1051–1061.

    PubMed  CAS  Google Scholar 

  78. Lin, P., & Medeiros, L. J. (2013). The Impact of MYC Rearrangements and “Double Hit” Abnormalities in Diffuse Large B-Cell Lymphoma. Current Hematologic Malignancy Reports. doi:10.1007/s11899-013-0169-y.

    PubMed  Google Scholar 

  79. Cavanaugh, A. H., Hempel, W. M., Taylor, L. J., Rogalsky, V., Todorov, G., & Rothblum, L. I. (1995). Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature, 374(6518), 177–180.

    PubMed  CAS  Google Scholar 

  80. White, R. J., Trouche, D., Martin, K., Jackson, S. P., & Kouzarides, T. (1996). Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature, 382(6586), 88–90.

    PubMed  CAS  Google Scholar 

  81. Knudsen, E. S., & Knudsen, K. E. (2008). Tailoring to RB: tumour suppressor status and therapeutic response. Nature Reviews Cancer, 8(9), 714–724.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Lane, D. P. (1992). Cancer. p53, guardian of the genome. Nature, 358(6381), 15–16.

    PubMed  CAS  Google Scholar 

  83. Holzel, M., Burger, K., Muhl, B., Orban, M., Kellner, M., & Eick, D. (2010). The tumor suppressor p53 connects ribosome biogenesis to cell cycle control: a double-edged sword. Oncotarget, 1(1), 43–47.

    PubMed  Google Scholar 

  84. Cairns, C. A., & White, R. J. (1998). p53 is a general repressor of RNA polymerase III transcription. Embo J, 17(11), 3112–3123.

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Zhai, W., & Comai, L. (2000). Repression of RNA polymerase I transcription by the tumor suppressor p53. Molecular and Cellular Biology, 20(16), 5930–5938.

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Krastev, D. B., Slabicki, M., Paszkowski-Rogacz, M., Hubner, N. C., Junqueira, M., Shevchenko, A., et al. (2011). A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nature Cell Biology, 13(7), 809–818.

    PubMed  CAS  Google Scholar 

  87. Gridasova, A. A., & Henry, R. W. (2005). The p53 tumor suppressor protein represses human snRNA gene transcription by RNA polymerases II and III independently of sequence-specific DNA binding. Molecular and Cellular Biology, 25(8), 3247–3260.

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Petroulakis, E., Parsyan, A., Dowling, R. J., LeBacquer, O., Martineau, Y., Bidinosti, M., et al. (2009). p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell, 16(5), 439–446.

    PubMed  CAS  Google Scholar 

  89. Loging, W. T., & Reisman, D. (1999). Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53. Cancer Epidemiology, Biomarkers and Prevention, 8(11), 1011–1016.

    PubMed  CAS  Google Scholar 

  90. Lessard, F., Morin, F., Ivanchuk, S., Langlois, F., Stefanovsky, V., Rutka, J., et al. (2010). The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I. Molecular Cell, 38(4), 539–550.

    PubMed  CAS  Google Scholar 

  91. Sugimoto, M., Kuo, M. L., Roussel, M. F., & Sherr, C. J. (2003). Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Molecular Cell, 11(2), 415–424.

    PubMed  CAS  Google Scholar 

  92. Kurki, S., Peltonen, K., Latonen, L., Kiviharju, T. M., Ojala, P. M., Meek, D., et al. (2004). Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell, 5(5), 465–475.

    PubMed  CAS  Google Scholar 

  93. Itahana, K., Bhat, K. P., Jin, A., Itahana, Y., Hawke, D., Kobayashi, R., et al. (2003). Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Molecular Cell, 12(5), 1151–1164.

    PubMed  CAS  Google Scholar 

  94. Ayrault, O., Andrique, L., Fauvin, D., Eymin, B., Gazzeri, S., & Seite, P. (2006). Human tumor suppressor p14ARF negatively regulates rRNA transcription and inhibits UBF1 transcription factor phosphorylation. Oncogene, 25(58), 7577–7586.

    PubMed  CAS  Google Scholar 

  95. Saporita, A. J., Chang, H. C., Winkeler, C. L., Apicelli, A. J., Kladney, R. D., Wang, J., et al. (2011). RNA helicase DDX5 is a p53-independent target of ARF that participates in ribosome biogenesis. Cancer Research, 71(21), 6708–6717.

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Lowe, S. W., & Sherr, C. J. (2003). Tumor suppression by Ink4a-Arf: progress and puzzles. Current Opinion in Genetics and Development, 13(1), 77–83.

    PubMed  CAS  Google Scholar 

  97. Nakao, A., Yoshihama, M., & Kenmochi, N. (2004). RPG: the ribosomal protein gene database. Nucleic Acids Research, 32, D168–D170.

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Mager, W. H., Planta, R. J., Ballesta, J. G., Lee, J. C., Mizuta, K., Suzuki, K., et al. (1997). A new nomenclature for the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Nucleic Acids Research, 25(24), 4872–4875.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Warner, J. R., & McIntosh, K. B. (2009). How common are extraribosomal functions of ribosomal proteins? Molecular Cell, 34(1), 3–11.

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Lam, Y. W., Lamond, A. I., Mann, M., & Andersen, J. S. (2007). Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Current Biology, 17(9), 749–760.

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Steffen, K. K., MacKay, V. L., Kerr, E. O., Tsuchiya, M., Hu, D., Fox, L. A., et al. (2008). Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell, 133(2), 292–302.

    PubMed Central  PubMed  CAS  Google Scholar 

  102. McIntosh, K. B., & Bonham-Smith, P. C. (2005). The two ribosomal protein L23A genes are differentially transcribed in Arabidopsis thaliana. Genome, 48(3), 443–454.

    PubMed  CAS  Google Scholar 

  103. McIntosh, K. B., Bhattacharya, A., Willis, I. M., & Warner, J. R. (2011). Eukaryotic cells producing ribosomes deficient in Rpl1 are hypersensitive to defects in the ubiquitin-proteasome system. PLoS One, 6(8), e23579.

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Mazumder, B., Sampath, P., Seshadri, V., Maitra, R. K., DiCorleto, P. E., & Fox, P. L. (2003). Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell, 115(2), 187–198.

    PubMed  CAS  Google Scholar 

  105. Martinez-Azorin, F., Remacha, M., & Ballesta, J. P. (2008). Functional characterization of ribosomal P1/P2 proteins in human cells. Biochemical Journal, 413(3), 527–534.

    PubMed  CAS  Google Scholar 

  106. Kondrashov, N., Pusic, A., Stumpf, C. R., Shimizu, K., Hsieh, A. C., Xue, S., et al. (2011). Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell, 145(3), 383–397.

    PubMed  CAS  Google Scholar 

  107. Ron, D., Chen, C. H., Caldwell, J., Jamieson, L., Orr, E., & Mochly-Rosen, D. (1994). Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proceedings of the National Academy of Sciences of the United States of America, 91(3), 839–843.

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Dresios, J., Panopoulos, P., & Synetos, D. (2006). Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Molecular Microbiology, 59(6), 1651–1663.

    PubMed  CAS  Google Scholar 

  109. Rabl, J., Leibundgut, M., Ataide, S. F., Haag, A., & Ban, N. (2011). Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science, 331(6018), 730–736.

    PubMed  CAS  Google Scholar 

  110. Arimoto, K., Fukuda, H., Imajoh-Ohmi, S., Saito, H., & Takekawa, M. (2008). Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nature Cell Biology, 10(11), 1324–1332.

    PubMed  CAS  Google Scholar 

  111. Ceci, M., Welshhans, K., Ciotti, M. T., Brandi, R., Parisi, C., Paoletti, F., et al. (2012). RACK1 is a ribosome scaffold protein for beta-actin mRNA/ZBP1 complex. PLoS One, 7(4), e35034.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Marques, N., Sese, M., Canovas, V., Valente, F., Bermudo, R., de Torres, I., et al. (2013). Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1. Oncogene. doi:10.1038/onc.2013.51.

    PubMed  Google Scholar 

  113. Lopez-Bergami, P., Habelhah, H., Bhoumik, A., Zhang, W., Wang, L. H., & Ronai, Z. (2005). RACK1 mediates activation of JNK by protein kinase C [corrected]. Molecular Cell, 19(3), 309–320.

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Ruan, Y., Sun, L., Hao, Y., Wang, L., Xu, J., Zhang, W., et al. (2012). Ribosomal RACK1 promotes chemoresistance and growth in human hepatocellular carcinoma. Journal of Clinical Investigation, 122(7), 2554–2566.

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Zhong, X., Li, M., Nie, B., Wu, F., Zhang, L., Wang, E., et al. (2013). Overexpressions of RACK1 and CD147 associated with poor prognosis in stage T1 pulmonary adenocarcinoma. Annals of Surgical Oncology, 20(3), 1044–1052.

    PubMed  Google Scholar 

  116. Wool, I. G. (1996). Extraribosomal functions of ribosomal proteins. Trends in Biochemical Sciences, 21(5), 164–165.

    PubMed  CAS  Google Scholar 

  117. Lindstrom, M. S., & Zhang, Y. (2008). Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation. Journal of Biological Chemistry, 283(23), 15568–15576.

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Ruggero, D., & Pandolfi, P. P. (2003). Does the ribosome translate cancer? Nature Reviews Cancer, 3(3), 179–192.

    PubMed  CAS  Google Scholar 

  119. Gil, J., Bernard, D., Martinez, D., & Beach, D. (2004). Polycomb CBX7 has a unifying role in cellular lifespan. Nature Cell Biology, 6(1), 67–72.

    PubMed  CAS  Google Scholar 

  120. Artero-Castro, A., Kondoh, H., Fernandez-Marcos, P. J., Serrano, M., Ramon y Cajal, S., & Lleonart, M. E. (2009). Rplp1 bypasses replicative senescence and contributes to transformation. Experimental Cell Research, 315.

  121. Artero-Castro, A., Castellvi, J., Garcia, A., Hernandez, J., Ramon y Cajal, S., & Lleonart, M. E. (2011). Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic tumors. Human Pathology, 42(2), 194–203.

    PubMed  CAS  Google Scholar 

  122. Chang, T. W., Chen, C. C., Chen, K. Y., Su, J. H., Chang, J. H., & Chang, M. C. (2008). Ribosomal phosphoprotein P0 interacts with GCIP and overexpression of P0 is associated with cellular proliferation in breast and liver carcinoma cells. Oncogene, 27(3), 332–338.

    PubMed  CAS  Google Scholar 

  123. Imafuku, I., Masaki, T., Waragai, M., Takeuchi, S., Kawabata, M., Hirai, S., et al. (1999). Presenilin 1 suppresses the function of c-Jun homodimers via interaction with QM/Jif-1. Journal of Cell Biology, 147(1), 121–134.

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Naora, H., Takai, I., Adachi, M., & Naora, H. (1998). Altered cellular responses by varying expression of a ribosomal protein gene: sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. Journal of Cell Biology, 141(3), 741–753.

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Yadavilli, S., Hegde, V., & Deutsch, W. A. (2007). Translocation of human ribosomal protein S3 to sites of DNA damage is dependant on ERK-mediated phosphorylation following genotoxic stress. DNA Repair (Amst), 6(10), 1453–1462.

    CAS  Google Scholar 

  126. Wan, F., Anderson, D. E., Barnitz, R. A., Snow, A., Bidere, N., Zheng, L., et al. (2007). Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell, 131(5), 927–939.

    PubMed  CAS  Google Scholar 

  127. Li, C., Ge, M., Yin, Y., Luo, M., & Chen, D. (2012). Silencing expression of ribosomal protein L26 and L29 by RNA interfering inhibits proliferation of human pancreatic cancer PANC-1 cells. Molecular and Cellular Biochemistry, 370(1–2), 127–139.

    PubMed  CAS  Google Scholar 

  128. Bee, A., Brewer, D., Beesley, C., Dodson, A., Forootan, S., Dickinson, T., et al. (2011). siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. PLoS One, 6(7), e22672.

    PubMed Central  PubMed  CAS  Google Scholar 

  129. Guo, X., Shi, Y., Gou, Y., Li, J., Han, S., Zhang, Y., et al. (2011). Human ribosomal protein S13 promotes gastric cancer growth through down-regulating p27(Kip1). Journal of Cellular and Molecular Medicine, 15(2), 296–306.

    PubMed  CAS  Google Scholar 

  130. Shuda, M., Kondoh, N., Tanaka, K., Ryo, A., Wakatsuki, T., Hada, A., et al. (2000). Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. Anticancer Research, 20(4), 2489–2494.

    PubMed  CAS  Google Scholar 

  131. Kondoh, N., Shuda, M., Tanaka, K., Wakatsuki, T., Hada, A., & Yamamoto, M. (2001). Enhanced expression of S8, L12, L23a, L27 and L30 ribosomal protein mRNAs in human hepatocellular carcinoma. Anticancer Research, 21(4A), 2429–2433.

    PubMed  CAS  Google Scholar 

  132. Wang, H., Zhao, L. N., Li, K. Z., Ling, R., Li, X. J., & Wang, L. (2006). Overexpression of ribosomal protein L15 is associated with cell proliferation in gastric cancer. BMC Cancer, 691.

  133. Genuario, R. R., Kelley, D. E., & Perry, R. P. (1993). Comparative utilization of transcription factor GABP by the promoters of ribosomal protein genes rpL30 and rpL32. Gene Expression, 3(3), 279–288.

    PubMed  CAS  Google Scholar 

  134. Huang, C. J., Yang, S. H., Lee, C. L., Cheng, Y. C., Tai, S. Y., & Chien, C. C. (2013). Ribosomal protein S27-like in colorectal cancer: a candidate for predicting prognoses. PLoS One, 8(6), e67043.

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Kobayashi, T., Sasaki, Y., Oshima, Y., Yamamoto, H., Mita, H., Suzuki, H., et al. (2006). Activation of the ribosomal protein L13 gene in human gastrointestinal cancer. International Journal of Molecular Medicine, 18(1), 161–170.

    PubMed  CAS  Google Scholar 

  136. Zheng, S. E., Yao, Y., Dong, Y., Lin, F., Zhao, H., Shen, Z., et al. (2009). Down-regulation of ribosomal protein L7A in human osteosarcoma. Journal of Cancer Research and Clinical Oncology, 135(8), 1025–1031.

    PubMed  CAS  Google Scholar 

  137. Pogue-Geile, K., Geiser, J. R., Shu, M., Miller, C., Wool, I. G., Meisler, A. I., et al. (1991). Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein. Molecular and Cellular Biology, 11(8), 3842–3849.

    PubMed Central  PubMed  CAS  Google Scholar 

  138. Bertram, J., Palfner, K., Hiddemann, W., & Kneba, M. (1998). Overexpression of ribosomal proteins L4 and L5 and the putative alternative elongation factor PTI-1 in the doxorubicin resistant human colon cancer cell line LoVoDxR. European Journal of Cancer, 34(5), 731–736.

    PubMed  CAS  Google Scholar 

  139. Hsu, Y. A., Lin, H. J., Sheu, J. J., Shieh, F. K., Chen, S. Y., Lai, C. H., et al. (2011). A novel interaction between interferon-inducible protein p56 and ribosomal protein L15 in gastric cancer cells. DNA and Cell Biology, 30(9), 671–679.

    PubMed  CAS  Google Scholar 

  140. Dai, M. S., & Lu, H. (2004). Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. Journal of Biological Chemistry, 279(43), 44475–44482.

    PubMed  CAS  Google Scholar 

  141. Zhang, Y., Wolf, G. W., Bhat, K., Jin, A., Allio, T., Burkhart, W. A., et al. (2003). Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Molecular and Cellular Biology, 23(23), 8902–8912.

    PubMed Central  PubMed  CAS  Google Scholar 

  142. Jin, A., Itahana, K., O'Keefe, K., & Zhang, Y. (2004). Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Molecular and Cellular Biology, 24(17), 7669–7680.

    PubMed Central  PubMed  CAS  Google Scholar 

  143. Rowland, B. D., & Peeper, D. S. (2006). KLF4, p21 and context-dependent opposing forces in cancer. Nature Reviews Cancer, 6(1), 11–23.

    PubMed  CAS  Google Scholar 

  144. Castro, M. E., Leal, J. F., Lleonart, M. E., Ramon, Y. C. S., & Carnero, A. (2008). Loss-of-function genetic screening identifies a cluster of ribosomal proteins regulating p53 function. Carcinogenesis, 29(7), 1343–1350.

    PubMed  CAS  Google Scholar 

  145. Andersen, J. B., Mazan-Mamczarz, K., Zhan, M., Gorospe, M., & Hassel, B. A. (2009). Ribosomal protein mRNAs are primary targets of regulation in RNase-l-induced senescence. RNA Biology, 6(3), 305–315.

    PubMed Central  PubMed  CAS  Google Scholar 

  146. Kim, M. J., Yoo, Y. A., Kim, H. J., Kang, S., Kim, Y. G., Kim, J. S., et al. (2005). Mitochondrial ribosomal protein L41 mediates serum starvation-induced cell-cycle arrest through an increase of p21(WAF1/CIP1). Biochemical and Biophysical Research Communications, 338(2), 1179–1184.

    PubMed  CAS  Google Scholar 

  147. Khanna, N., Reddy, V. G., Tuteja, N., & Singh, N. (2000). Differential gene expression in apoptosis: identification of ribosomal protein S29 as an apoptotic inducer. Biochemical and Biophysical Research Communications, 277(2), 476–486.

    PubMed  CAS  Google Scholar 

  148. Khanna, N., Sen, S., Sharma, H., & Singh, N. (2003). S29 ribosomal protein induces apoptosis in H520 cells and sensitizes them to chemotherapy. Biochemical and Biophysical Research Communications, 304(1), 26–35.

    PubMed  CAS  Google Scholar 

  149. Sim, E. U., Ang, C. H., Ng, C. C., Lee, C. W., & Narayanan, K. (2010). Differential expression of a subset of ribosomal protein genes in cell lines derived from human nasopharyngeal epithelium. Journal of Human Genetics, 55(2), 118–120.

    PubMed  CAS  Google Scholar 

  150. Robledo, S., Idol, R. A., Crimmins, D. L., Ladenson, J. H., Mason, P. J., & Bessler, M. (2008). The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA, 14(9), 1918–1929.

    PubMed Central  PubMed  CAS  Google Scholar 

  151. Angelini, M., Cannata, S., Mercaldo, V., Gibello, L., Santoro, C., Dianzani, I., et al. (2007). Missense mutations associated with Diamond-Blackfan anemia affect the assembly of ribosomal protein S19 into the ribosome. Human Molecular Genetics, 16(14), 1720–1727.

    PubMed  CAS  Google Scholar 

  152. Dai, M. S., Zeng, S. X., Jin, Y., Sun, X. X., David, L., & Lu, H. (2004). Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Molecular and Cellular Biology, 24(17), 7654–7668.

    PubMed Central  PubMed  CAS  Google Scholar 

  153. Lohrum, M. A., Ludwig, R. L., Kubbutat, M. H., Hanlon, M., & Vousden, K. H. (2003). Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell, 3(6), 577–587.

    PubMed  CAS  Google Scholar 

  154. Chen, J., Guo, K., & Kastan, M. B. (2012). Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA. Journal of Biological Chemistry, 287(20), 16467–16476.

    PubMed Central  PubMed  CAS  Google Scholar 

  155. Gao, M., Li, X., Dong, W., Jin, R., Ma, H., Yang, P., et al. (2013). Ribosomal protein S7 regulates arsenite-induced GADD45alpha expression by attenuating MDM2-mediated GADD45alpha ubiquitination and degradation. Nucleic Acids Research, 41(10), 5210–5222.

    PubMed Central  PubMed  CAS  Google Scholar 

  156. Sun, X. X., DeVine, T., Challagundla, K. B., & Dai, M. S. (2011). Interplay between ribosomal protein S27a and MDM2 protein in p53 activation in response to ribosomal stress. Journal of Biological Chemistry, 286(26), 22730–22741.

    PubMed Central  PubMed  CAS  Google Scholar 

  157. Yadavilli, S., Mayo, L. D., Higgins, M., Lain, S., Hegde, V., & Deutsch, W. A. (2009). Ribosomal protein S3: a multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair (Amst), 8(10), 1215–1224.

    CAS  Google Scholar 

  158. Ofir-Rosenfeld, Y., Boggs, K., Michael, D., Kastan, M. B., & Oren, M. (2008). Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Molecular Cell, 32(2), 180–189.

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Zhang, X., Wang, W., Wang, H., Wang, M. H., Xu, W., & Zhang, R. (2013). Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene, 32(22), 2782–2791.

    PubMed  CAS  Google Scholar 

  160. Xiong, X., Zhao, Y., He, H., & Sun, Y. (2011). Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene, 30(15), 1798–1811.

    PubMed Central  PubMed  CAS  Google Scholar 

  161. Anderson, S. J., Lauritsen, J. P., Hartman, M. G., Foushee, A. M., Lefebvre, J. M., Shinton, S. A., et al. (2007). Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity, 26(6), 759–772.

    PubMed  CAS  Google Scholar 

  162. Danilova, N., Sakamoto, K. M., & Lin, S. (2008). Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood, 112(13), 5228–5237.

    PubMed  CAS  Google Scholar 

  163. Fumagalli, S., Ivanenkov, V. V., Teng, T., & Thomas, G. (2012). Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes and Development, 26(10), 1028–1040.

    PubMed Central  PubMed  CAS  Google Scholar 

  164. Dutt, S., Narla, A., Lin, K., Mullally, A., Abayasekara, N., Megerdichian, C., et al. (2011). Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood, 117(9), 2567–2576.

    PubMed Central  PubMed  CAS  Google Scholar 

  165. Morgado-Palacin, L., Llanos, S., & Serrano, M. (2012). Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells. Cell Cycle, 11(3), 503–510.

    PubMed  CAS  Google Scholar 

  166. Daftuar, L., Zhu, Y., Jacq, X., & Prives, C. (2013). Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network. PLoS One, 8(7), e68667.

    PubMed Central  PubMed  CAS  Google Scholar 

  167. Macias, E., Jin, A., Deisenroth, C., Bhat, K., Mao, H., Lindstrom, M. S., et al. (2010). An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 interaction. Cancer Cell, 18(3), 231–243.

    PubMed  CAS  Google Scholar 

  168. Sun, X. X., Dai, M. S., & Lu, H. (2007). 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. Journal of Biological Chemistry, 282(11), 8052–8059.

    PubMed  CAS  Google Scholar 

  169. Bursac, S., Brdovcak, M. C., Pfannkuchen, M., Orsolic, I., Golomb, L., Zhu, Y., et al. (2012). Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20467–20472.

    PubMed Central  PubMed  CAS  Google Scholar 

  170. Takagi, M., Absalon, M. J., McLure, K. G., & Kastan, M. B. (2005). Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell, 123(1), 49–63.

    PubMed  CAS  Google Scholar 

  171. Cui, D., Li, L., Lou, H., Sun, H., Ngai, S. M., Shao, G., et al. (2013). The ribosomal protein S26 regulates p53 activity in response to DNA damage. Oncogene. doi:10.1038/onc.2013.170.1-11.

    Google Scholar 

  172. Landry, D. M., Hertz, M. I., & Thompson, S. R. (2009). RPS25 Is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs. Genes and Development, 23(23), 2753–2764.

    PubMed Central  PubMed  CAS  Google Scholar 

  173. Amsterdam, A., Sadler, K. C., Lai, K., Farrington, S., Bronson, R. T., Lees, J. A., et al. (2004). Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biology, 2(5), E139.

    PubMed Central  PubMed  Google Scholar 

  174. Stadanlick, J. E., Zhang, Z., Lee, S. Y., Hemann, M., Biery, M., Carleton, M. O., et al. (2011). Developmental arrest of T cells in Rpl22-deficient mice is dependent upon multiple p53 effectors. Journal of Immunology, 187(2), 664–675.

    CAS  Google Scholar 

  175. Panic, L., Tamarut, S., Sticker-Jantscheff, M., Barkic, M., Solter, D., Uzelac, M., et al. (2006). Ribosomal protein S6 haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol Cell Biol doi:http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17000767

  176. Payne, E. M., Virgilio, M., Narla, A., Sun, H., Levine, M., Paw, B. H., et al. (2012). L-leucine improves the anemia and developmental defects associated with diamond-blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood, 120(11), 2214–2224.

    PubMed Central  PubMed  CAS  Google Scholar 

  177. Iadevaia, V., Caldarola, S., Biondini, L., Gismondi, A., Karlsson, S., Dianzani, I., et al. (2010). PIM1 kinase is destabilized by ribosomal stress causing inhibition of cell cycle progression. Oncogene, 29(40), 5490–5499.

    PubMed  CAS  Google Scholar 

  178. Zhang, F., Hamanka, R. B., Bobrovnikova-Marjon, E., Gordan, J., Dai, M. S., Lu, H., et al. (2006). Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest. J Biol Chem doi:http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16893887

  179. Efeyan, A., Garcia-Cao, I., Herranz, D., Velasco-Miguel, S., & Serrano, M. (2006). Tumour biology: policing of oncogene activity by p53. Nature, 443(7108), 159.

    PubMed  CAS  Google Scholar 

  180. Yang, X. Y., Ren, C. P., Wang, L., Li, H., Jiang, C. J., Zhang, H. B., et al. (2005). Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cellular Oncology, 27(4), 215–223.

    PubMed  CAS  Google Scholar 

  181. Ishiguro, T., Nakajima, M., Naito, M., Muto, T., & Tsuruo, T. (1996). Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials. Cancer Research, 56(4), 875–879.

    PubMed  CAS  Google Scholar 

  182. Kreunin, P., Yoo, C., Urquidi, V., Lubman, D. M., & Goodison, S. (2007). Differential expression of ribosomal proteins in a human metastasis model identified by coupling 2-D liquid chromatography and mass spectrometry. Cancer Genomics Proteomics, 4(5), 329–339.

    PubMed Central  PubMed  CAS  Google Scholar 

  183. Liu, F., Li, Y., Yu, Y., Fu, S., & Li, P. (2007). Cloning of novel tumor metastasis-related genes from the highly metastatic human lung adenocarcinoma cell line Anip973. Journal of Genetics and Genomics, 34(3), 189–195.

    PubMed  CAS  Google Scholar 

  184. Huang, L., Zheng, M., Zhou, Q. M., Zhang, M. Y., Jia, W. H., Yun, J. P., et al. (2011). Identification of a gene-expression signature for predicting lymph node metastasis in patients with early stage cervical carcinoma. Cancer, 117(15), 3363–3373.

    PubMed  CAS  Google Scholar 

  185. Ma, X. J., Dahiya, S., Richardson, E., Erlander, M., & Sgroi, D. C. (2009). Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Research, 11(1), R7.

    PubMed Central  PubMed  Google Scholar 

  186. Fernandez-Pol, J. A. (2012). Increased serum level of RPMPS-1/S27 protein in patients with various types of cancer is useful for the early detection, prevention and therapy. Cancer Genomics Proteomics, 9(4), 203–256.

    PubMed  CAS  Google Scholar 

  187. Kim, S. H., & Kim, J. (2006). Reduction of invasion in human fibrosarcoma cells by ribosomal protein S3 in conjunction with Nm23-H1 and ERK. Biochimica et Biophysica Acta, 1763(8), 823–832.

    PubMed  CAS  Google Scholar 

  188. Cao, X. X., Xu, J. D., Xu, J. W., Liu, X. L., Cheng, Y. Y., Wang, W. J., et al. (2010). RACK1 promotes breast carcinoma proliferation and invasion/metastasis in vitro and in vivo. Breast Cancer Research and Treatment, 123(2), 375–386.

    PubMed  CAS  Google Scholar 

  189. Li, J., Guo, Y., Feng, X., Wang, Z., Wang, Y., Deng, P., et al. (2012). Receptor for activated C kinase 1 (RACK1): a regulator for migration and invasion in oral squamous cell carcinoma cells. Journal of Cancer Research and Clinical Oncology, 138(4), 563–571.

    PubMed  CAS  Google Scholar 

  190. Cao, X. X., Xu, J. D., Xu, J. W., Liu, X. L., Cheng, Y. Y., Li, Q. Q., et al. (2011). RACK1 promotes breast carcinoma migration/metastasis via activation of the RhoA/Rho kinase pathway. Breast Cancer Research and Treatment, 126(3), 555–563.

    PubMed  CAS  Google Scholar 

  191. Ould-Abeih, M. B., Petit-Topin, I., Zidane, N., Baron, B., & Bedouelle, H. (2012). Multiple folding states and disorder of ribosomal protein SA, a membrane receptor for laminin, anticarcinogens, and pathogens. Biochemistry, 51(24), 4807–4821.

    PubMed  CAS  Google Scholar 

  192. Hundt, C., Peyrin, J. M., Haik, S., Gauczynski, S., Leucht, C., Rieger, R., et al. (2001). Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO Journal, 20(21), 5876–5886.

    PubMed Central  PubMed  CAS  Google Scholar 

  193. Berno, V., Porrini, D., Castiglioni, F., Campiglio, M., Casalini, P., Pupa, S. M., et al. (2005). The 67 kDa laminin receptor increases tumor aggressiveness by remodeling laminin-1. Endocrine-Related Cancer, 12(2), 393–406.

    PubMed  CAS  Google Scholar 

  194. Umeda, D., Yano, S., Yamada, K., & Tachibana, H. (2008). Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. Journal of Biological Chemistry, 283(6), 3050–3058.

    PubMed  CAS  Google Scholar 

  195. Skipper, M., Dhand, R., & Campbell, P. (2012). Presenting ENCODE. Nature, 489(7414), 45.

    PubMed  CAS  Google Scholar 

  196. Lipson, D., Raz, T., Kieu, A., Jones, D. R., Giladi, E., Thayer, E., et al. (2009). Quantification of the yeast transcriptome by single-molecule sequencing. Nature Biotechnology, 27(7), 652–658.

    PubMed  CAS  Google Scholar 

  197. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621–628.

    PubMed  CAS  Google Scholar 

  198. Badis, G., Saveanu, C., Fromont-Racine, M., & Jacquier, A. (2004). Targeted mRNA degradation by deadenylation-independent decapping. Molecular Cell, 15(1), 5–15.

    PubMed  CAS  Google Scholar 

  199. Meyuhas, O. (2000). Synthesis of the translational apparatus is regulated at the translational level. European Journal of Biochemistry, 267(21), 6321–6330.

    PubMed  CAS  Google Scholar 

  200. Loayza-Puch, F., Drost, J., Rooijers, K., Lopes, R., Elkon, R., & Agami, R. (2013). p53 induces transcriptional and translational programs to suppress cell proliferation and growth. Genome Biology, 14(4), R32.

    PubMed  Google Scholar 

  201. Nilsen, T. W., & Graveley, B. R. (2010). Expansion of the eukaryotic proteome by alternative splicing. Nature, 463(7280), 457–463.

    PubMed Central  PubMed  CAS  Google Scholar 

  202. Papasaikas, P., & Valcarcel, J. (2012). Evolution. Splicing in 4D. Science, 338(6114), 1547–1548.

    PubMed  Google Scholar 

  203. Flicek, P., Ahmed, I., Amode, M. R., Barrell, D., Beal, K., Brent, S., et al. (2013). Ensembl 2013. Nucleic Acids Research, 41, D48–D55.

    PubMed Central  PubMed  CAS  Google Scholar 

  204. Plocik, A. M., & Guthrie, C. (2012). Diverse forms of RPS9 splicing are part of an evolving autoregulatory circuit. PLoS Genetics, 8(3), e1002620.

    PubMed Central  PubMed  CAS  Google Scholar 

  205. Malygin, A. A., Parakhnevitch, N. M., Ivanov, A. V., Eperon, I. C., & Karpova, G. G. (2007). Human ribosomal protein S13 regulates expression of its own gene at the splicing step by a feedback mechanism. Nucleic Acids Research, 35(19), 6414–6423.

    PubMed Central  PubMed  CAS  Google Scholar 

  206. Macías, S., Bragulat, M., Tardiff, D. F., & Vilardell, J. (2008). L30 binds the nascent RPL30 transcript to repress U2 snRNP recruitment. Molecular Cell, 30(6), 732–742.

    PubMed  Google Scholar 

  207. Russo, A., Catillo, M., Esposito, D., Briata, P., Pietropaolo, C., & Russo, G. (2011). Autoregulatory circuit of human rpL3 expression requires hnRNP H1, NPM and KHSRP. Nucleic Acids Research, 39(17), 7576–7585.

    PubMed Central  PubMed  CAS  Google Scholar 

  208. Mitrovich, Q. M., & Anderson, P. (2000). Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C. elegans. Genes and Development, 14(17), 2173–2184.

    PubMed Central  PubMed  CAS  Google Scholar 

  209. van Hoof, A., & Wagner, E. J. (2011). A brief survey of mRNA surveillance. Trends in Biochemical Sciences, 36(11), 585–592.

    PubMed Central  PubMed  Google Scholar 

  210. McIlwain, D. R., Pan, Q., Reilly, P. T., Elia, A. J., McCracken, S., Wakeham, A. C., et al. (2010). Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12186–12191.

    PubMed Central  PubMed  Google Scholar 

  211. Nguyen, L. S., Jolly, L., Shoubridge, C., Chan, W. K., Huang, L., Laumonnier, F., et al. (2012). Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Molecular Psychiatry, 17(11), 1103–1115.

    PubMed  CAS  Google Scholar 

  212. McIntosh, K. B., & Warner, J. R. (2007). Yeast ribosomes: variety is the spice of life. Cell, 131(3), 450–451.

    PubMed  CAS  Google Scholar 

  213. Komili, S., Farny, N. G., Roth, F. P., & Silver, P. A. (2007). Functional specificity among ribosomal proteins regulates gene expression. Cell, 131(3), 557–571.

    PubMed Central  PubMed  CAS  Google Scholar 

  214. Fregoso, O. I., Das, S., Akerman, M., & Krainer, A. R. (2013). Splicing-factor oncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence. Molecular Cell, 50(1), 56–66.

    PubMed Central  PubMed  CAS  Google Scholar 

  215. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63.

    PubMed Central  PubMed  CAS  Google Scholar 

  216. Suyama, M., Harrington, E., Bork, P., & Torrents, D. (2006). Identification and analysis of genes and pseudogenes within duplicated regions in the human and mouse genomes. PLoS Computational Biology, 2(6), e76.

    PubMed Central  PubMed  Google Scholar 

  217. Balasubramanian, S., Zheng, D., Liu, Y. J., Fang, G., Frankish, A., Carriero, N., et al. (2009). Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome Biology, 10(1), R2.

    PubMed Central  PubMed  Google Scholar 

  218. Tonner, P., Srinivasasainagendra, V., Zhang, S., & Zhi, D. (2012). Detecting transcription of ribosomal protein pseudogenes in diverse human tissues from RNA-seq data. BMC Genomics, 13412.

  219. Garraway, L. A., & Lander, E. S. (2013). Lessons from the cancer genome. Cell, 153(1), 17–37.

    PubMed  CAS  Google Scholar 

  220. Bywater, M. J., Poortinga, G., Sanij, E., Hein, N., Peck, A., Cullinane, C., et al. (2012). Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell, 22(1), 51–65.

    PubMed Central  PubMed  CAS  Google Scholar 

  221. Hong, D. S., Kurzrock, R., Oh, Y., Wheler, J., Naing, A., Brail, L., et al. (2011). A phase 1 dose escalation, pharmacokinetic, and pharmacodynamic evaluation of eIF-4E antisense oligonucleotide LY2275796 in patients with advanced cancer. Clinical Cancer Research, 17(20), 6582–6591.

    PubMed  CAS  Google Scholar 

  222. Wendel, H. G., Silva, R. L., Malina, A., Mills, J. R., Zhu, H., Ueda, T., et al. (2007). Dissecting eIF4E action in tumorigenesis. Genes and Development, 21(24), 3232–3237.

    PubMed Central  PubMed  CAS  Google Scholar 

  223. Jiang, B. H., & Liu, L. Z. (2008). Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resistance Updates, 11(3), 63–76.

    PubMed Central  PubMed  CAS  Google Scholar 

  224. Meng, H., Jin, Y., Liu, H., You, L., Yang, C., Yang, X., et al. (2013). SNS-032 inhibits mTORC1/mTORC2 activity in acute myeloid leukemia cells and has synergistic activity with perifosine against Akt. Journal of Hematology & Oncology, 618.

  225. Shortt, J., Martin, B. P., Newbold, A., Hannan, K. M., Devlin, J. R., Baker, A. J., et al. (2013). Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas. Blood, 121(15), 2964–2974.

    PubMed Central  PubMed  CAS  Google Scholar 

  226. Ruggero, D., Grisendi, S., Piazza, F., Rego, E., Mari, F., Rao, P. H., et al. (2003). Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science, 299(5604), 259–262.

    PubMed  CAS  Google Scholar 

  227. Campagnoli, M. F., Ramenghi, U., Armiraglio, M., Quarello, P., Garelli, E., Carando, A., et al. (2008). RPS19 mutations in patients with Diamond–Blackfan anemia. Human Mutation, 29(7), 911–920.

    PubMed  CAS  Google Scholar 

  228. Perdahl, E. B., Naprstek, B. L., Wallace, W. C., & Lipton, J. M. (1994). Erythroid failure in diamond-blackfan anemia is characterized by apoptosis. Blood, 83(3), 645–650.

    PubMed  CAS  Google Scholar 

  229. Gazda, H. T., Kho, A. T., Sanoudou, D., Zaucha, J. M., Kohane, I. S., Sieff, C. A., et al. (2006). Defective ribosomal protein gene expression alters transcription, translation, apoptosis and oncogenic pathways in diamond-blackfan anemia. Stem Cells doi:http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16741228

  230. Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T. N., Dianzani, I., et al. (1999). The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nature Genetics, 21(2), 169–175.

    PubMed  CAS  Google Scholar 

  231. Horos, R., Ijspeert, H., Pospisilova, D., Sendtner, R., Andrieu-Soler, C., Taskesen, E., et al. (2012). Ribosomal deficiencies in Diamond–Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood, 119(1), 262–272.

    PubMed  CAS  Google Scholar 

  232. Ebert, B. L., Pretz, J., Bosco, J., Chang, C. Y., Tamayo, P., Galili, N., et al. (2008). Identification of RPS14 as a 5q-syndrome gene by RNA interference screen. Nature, 451(7176), 335–339.

    PubMed Central  PubMed  CAS  Google Scholar 

  233. Wang, M., Hu, Y., & Stearns, M. E. (2009). RPS2: a novel therapeutic target in prostate cancer. Journal of Experimental & Clinical Cancer Research, 286.

  234. Chen, A., Kaganovsky, E., Rahimipour, S., Ben-Aroya, N., Okon, E., & Koch, Y. (2002). Two forms of gonadotropin-releasing hormone (GnRH) are expressed in human breast tissue and overexpressed in breast cancer: a putative mechanism for the antiproliferative effect of GnRH by down-regulation of acidic ribosomal phosphoproteins P1 and P2. Cancer Research, 62(4), 1036–1044.

    PubMed  CAS  Google Scholar 

  235. Kobayashi, Y., Mizunuma, M., Osada, H., & Miyakawa, T. (2006). Identification of Saccharomyces cerevisiae ribosomal protein L3 as a target of curvularol, a G(1)-specific inhibitor of mammalian cells. Biosci Biotechnol Biochem doi:http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17031058

  236. Barnard, G. F., Staniunas, R. J., Mori, M., Puder, M., Jessup, M. J., Steele, G. D., Jr., et al. (1993). Gastric and hepatocellular carcinomas do not overexpress the same ribosomal protein messenger RNAs as colonic carcinoma. Cancer Research, 53(17), 4048–4052.

    PubMed  CAS  Google Scholar 

  237. De Keersmaecker, K., Atak, Z. K., Li, N., Vicente, C., Patchett, S., Girardi, T., et al. (2013). Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nature Genetics, 45(2), 186–190.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the members of the Pathology Department at the Hospital Vall d'Hebron. Tha authors especially thank J.A. Leal for scientific support in the review of the manuscript. The current study, including the contract of M. E. LLeonart, was supported by grants from the Ministerio de Sanidad (FIS PI12/01104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. LLeonart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de las Heras-Rubio, A., Perucho, L., Paciucci, R. et al. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 33, 115–141 (2014). https://doi.org/10.1007/s10555-013-9460-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9460-6

Keywords

Navigation