Skip to main content

Advertisement

Log in

Towards the fabrication of artificial 3D microdevices for neural cell networks

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This work reports first steps towards the development of artificial neural stem cell microenvironments for the control and assessment of neural stem cell behaviour. Stem cells have been shown to be found in specific, supportive microenvironments (niches) and are believed to play an important role in tissue regeneration mechanisms. These environments are intricate spaces with chemical and biological features. Here we present work towards the development of physically defined microdevices in which neural and neural stem cells can be studied in 3-dimensions. We have approached this challenge by creating bespoke, microstructured polymer environments using both 2-photon polymerisation and soft lithography techniques. Specifically, we have designed and fabricated biodegradable microwell-shaped devices using an in house synthetized polymer (4-arm photocurable poly-lactid acid) on a bespoke 2-photon polymerisation (2PP) set-up. We have studied swelling and degradation of the constructs as well as biocompatibility. Moreover, we have explored the potential of these constructs as artificial neural cell substrates by culturing NG108-15 cells (mouse neuroblastoma; rat glioma hybrid) and human neural progenitor cells on the microstructures. Finally, we have studied the effects of our artificial microenvironments upon neurite length and cell density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • S.R. Braam, L. Zeinstra, S. Litjens, D. Ward-van Oostwaard, S. van den Brink, L. van Laake, F. Lebrin, P. Kats, R. Hochstenbach, R. Passier, A. Sonnenberg, C.L. Mummery, Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells (Dayton, Ohio) 26(9), 2257–2265 (2008)

    Article  Google Scholar 

  • P.T. Brown, A.M. Handorf, W.B. Jeon, W.J. Li, Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr. Pharm. Des. 19(19), 3429–3445 (2013)

    Article  Google Scholar 

  • M.A. Caldwell, X. He, N. Wilkie, S. Pollack, G. Marshall, K.A. Wafford, C.N. Svendsen, Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat. Biotech. 19(5), 475–479 (2001)

    Article  Google Scholar 

  • G. Cotsarelis, S.-Z. Cheng, G. Dong, T.-T. Sun, R.M. Lavker, Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57(2), 201–209 (1989)

    Article  Google Scholar 

  • F. Doetsch, I. Caillé, D.A. Lim, J.M. García-Verdugo, A. Alvarez-Buylla, Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6), 703–716 (1999)

    Article  Google Scholar 

  • B. Ebato, J. Friend, R.A. Thoft, Comparison of central and peripheral human corneal epithelium in tissue culture. Invest. Ophthalmol. Vis. Sci. 28(9), 1450–1456 (1987)

    Google Scholar 

  • A.C.C. Esteves, J. Brokken-Zijp, J. Laven, H.P. Huinink, N.J.W. Reuvers, M.P. Van, G. de With, Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed. Polymer 50(16), 3955–3966 (2009)

    Article  Google Scholar 

  • O.Z. Fisher, A. Khademhosseini, R. Langer, N.A. Peppas, Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43(3), 419–428 (2010)

    Article  Google Scholar 

  • H. Francisco, B.B. Yellen, D.S. Halverson, G. Friedman, G. Gallo, Regulation of axon guidance and extension by three-dimensional constraints. Biomaterials 28(23), 3398–3407 (2007)

    Article  Google Scholar 

  • E. Fuchs, T. Tumbar, G. Guasch, Socializing with the neighbors: stem cells and their niche. Cell 116(6), 769–778 (2004)

    Article  Google Scholar 

  • F.H. Gage, G. Kempermann, T.D. Palmer, D.A. Peterson, J. Ray, Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 36(2), 249–266 (1998)

    Article  Google Scholar 

  • S. Gobaa, S. Hoehnel, M. Roccio, A. Negro, S. Kobel, M.P. Lutolf, Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Meth. 8(11), 949–955 (2011)

    Article  Google Scholar 

  • J.M. Karp, J. Yeh, G. Eng, J. Fukuda, J. Blumling, K.-Y. Suh, J. Cheng, A. Mahdavi, J. Borenstein, R. Langer, A. Khademhosseini, Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7(6), 786–794 (2007)

    Article  Google Scholar 

  • A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U. S. A. 103(8), 2480–2487 (2006)

    Article  Google Scholar 

  • A. Koroleva, A. A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, F. Claeyssens. “Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications.” Biofabrication 4(2) (2012)

  • K.J. Lampe, S.C. Heilshorn, Building stem cell niches from the molecule up through engineered peptide materials. Neurosci. Lett. 519(2), 138–146 (2012)

    Article  Google Scholar 

  • K.J. Lampe, R.G. Mooney, K.B. Bjugstad, M.J. Mahoney, Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture. J. Biomed. Mater. Res. Part A 94A(4), 1162–1171 (2010)

    Google Scholar 

  • W. Li, Z. Xu, J. Huang, X. Lin, R. Luo, C.-H. Chen, P. Shi. “NeuroArray: A Universal Interface for Patterning and Interrogating Neural Circuitry with Single Cell Resolution.” Sci. Rep. 4 (2014)

  • M.P. Lutolf, H.M. Blau, Artificial stem cell niches. Adv. Mater. 21(32–33), 3255–3268 (2009)

    Article  Google Scholar 

  • M.P. Lutolf, P.M. Gilbert, H.M. Blau, Designing materials to direct stem-cell fate. Nature 462(7272), 433–441 (2009)

    Article  Google Scholar 

  • S. MacNeil, Progress and opportunities for tissue-engineered skin. Nature 445(7130), 874–880 (2007)

    Article  Google Scholar 

  • Y. Mei, K. Saha, S.R. Bogatyrev, J. Yang, A.L. Hook, Z.I. Kalcioglu, S.-W. Cho, M. Mitalipova, N. Pyzocha, F. Rojas, K.J. Van Vliet, M.C. Davies, M.R. Alexander, R. Langer, R. Jaenisch, D.G. Anderson, Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 9(9), 768–778 (2010)

    Article  Google Scholar 

  • V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, F. Claeyssens. “Direct laser writing of 3D scaffolds for neural tissue engineering applications.” Biofabrication 3(4) (2011)

  • H.-C. Moeller, M.K. Mian, S. Shrivastava, B.G. Chung, A. Khademhosseini, A microwell array system for stem cell culture. Biomaterials 29(6), 752–763 (2008)

    Article  Google Scholar 

  • B. Murtuza, J.W. Nichol, A. Khademhosseini, Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication. Tissue Eng. Part B-Rev. 15(4), 443–454 (2009)

    Article  Google Scholar 

  • K. Numata, R.K. Srivastava, A. Finne-Wistrand, A.-C. Albertsson, Y. Doi, H. Abe, Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis. Biomacromolecules 8(10), 3115–3125 (2007)

    Article  Google Scholar 

  • I. Ortega, P. Deshpande, A.A. Gill, S. MacNeil, F. Claeyssens, Development of a microfabricated artificial limbus with micropockets for cell delivery to the cornea. Biofabrication 5(2), 1758–5082 (2013a)

    Article  Google Scholar 

  • I. Ortega, A.J. Ryan, P. Deshpande, S. MacNeil, F. Claeyssens, Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair. Acta Biomater. 9(3), 5511–5520 (2013b)

    Article  Google Scholar 

  • I. Ortega, R. McKean, A. J. Ryan, S. MacNeil, F. Claeyssens. Characterisation and evaluation of the impact of microfabricated pockets on the performance of limbal epithelial stem cells in biodegradable PLGA membranes for corneal regeneration. Biomater. Sci. 2(5), 723–734 (2014a)

  • Í. Ortega, F. Sefat, P. Deshpande, T. Paterson, C. Ramachandran, A.J. Ryan, et al. Combination of microstereolithography and electrospinning to produce membranes equipped with niches for corneal regeneration. J. Vis. Exp. (91), e51826 (2014b). doi:10.3791/51826

  • A. Ostendorf, B.N. Chichkov, Two-photon polymerization: a new approach to micromachining. Photonics Spectra 40(10), 72 (2006)

    Google Scholar 

  • P.S. Pastides, W.S. Khan, Cell-based therapies in musculoskeletal injuries: the evolving role of bone marrow-derived mesenchymal stem cells. Br. J. Med. Med. Res. 1(4), 486–500 (2011)

    Article  Google Scholar 

  • G. Pellegrini, C.E. Traverso, A.T. Franzi, M. Zingirian, R. Cancedda, M. De Luca, Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349(9057), 990–993 (1997)

    Article  Google Scholar 

  • M.T. Raimondi, S.M. Eaton, M.M. Nava, M. Lagana, G. Cerullo, R. Osellame, Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine. J. Appl. Biomater. Funct. Mater. 10(1), 55–65 (2012)

    Google Scholar 

  • M.T. Raimondi, S.M. Eaton, M. Laganà, V. Aprile, M.M. Nava, G. Cerullo, R. Osellame, Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing. Acta Biomater. 9(1), 4579–4584 (2013)

    Article  Google Scholar 

  • K. Saha, A.J. Keung, E.F. Irwin, Y. Li, L. Little, D.V. Schaffer, K.E. Healy, Substrate modulus directs neural stem cell behavior. Biophys. J. 95(9), 4426–4438 (2008)

    Article  Google Scholar 

  • C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, D. Karalekas, On the design and fabrication by two-photon polymerization of a readily assembled micro-valve. Int. J. Adv. Manuf. Technol. 48(5–8), 435–441 (2010)

    Article  Google Scholar 

  • J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall, Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics. Opt. Lett. 28(5), 301–303 (2003)

    Article  Google Scholar 

  • A.J. Shortt, G.A. Secker, P.M. Munro, P.T. Khaw, S.J. Tuft, J.T. Daniels, Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25(6), 1402–1409 (2007)

    Article  Google Scholar 

  • R. Truckenmuller, S. Giselbrecht, M. Escalante-Marun, M. Groenendijk, B. Papenburg, N. Rivron, H. Unadkat, V. Saile, V. Subramaniam, A. van den Berg, C. van Blitterswijk, M. Wessling, J. de Boer, D. Stamatialis, Fabrication of cell container arrays with overlaid surface topographies. Biomed. Microdevices 14(1), 95–107 (2012)

    Article  Google Scholar 

  • T. Tumbar, G. Guasch, V. Greco, C. Blanpain, W.E. Lowry, M. Rendl, E. Fuchs, Defining the epithelial stem cell niche in skin. Science 303(5656), 359–363 (2004)

    Article  Google Scholar 

  • B.C. Wheeler, G.J. Brewer, Designing neural networks in culture: experiments are described for controlled growth, of nerve cells taken from rats, in predesigned geometrical patterns on laboratory culture dishes. Proc. IEEE Inst. Electr. Electron. Eng. 98(3), 398–406 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

FC thanks EPSRC for funding under the DTA studentship scheme (for AAG). We are particularly grateful to Nicola Green for her support in confocal imaging.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ílida Ortega or Frederik Claeyssens.

Additional information

Andrew and Ilida are joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, A.A., Ortega, Í., Kelly, S. et al. Towards the fabrication of artificial 3D microdevices for neural cell networks. Biomed Microdevices 17, 27 (2015). https://doi.org/10.1007/s10544-015-9929-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9929-x

Keywords

Navigation