Skip to main content
Log in

Interaction of U(VI) with Schizophyllum commune studied by microscopic and spectroscopic methods

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Biosorption of actinides like uranium by fungal cells can play an important role in the mobilization or immobilization of these elements in nature. Sorption experiments of U(VI) with Schizophyllum commune at different initial uranium concentrations and varying metal speciation showed high uranium sorption capacities in the pH range of 4–7. A combination of high angle annular dark-field and scanning transmission electron microscopy analysis (HAADF-STEM) showed that living mycelium cells accumulate uranium at the cell wall and intracellular. For the first time the fluorescence properties of uranium accumulates were investigated by means of time-resolved laser-induced fluorescence spectroscopy (TRLFS) beside the determination of corresponding structural parameters using X-ray absorption fine structure spectroscopy (EXAFS). While the oxidation state of uranium remained unchanged during sorption, uranium speciation changed significantly. Extra and intracellular phosphate groups are mainly responsible for uranium binding. TRLFS spectra clearly show differences between the emission properties of dissolved species in the initial mineral medium and of uranium species on fungi. The latter were proved to be organic and inorganic uranyl phosphates formed depending on the uranyl initial concentration and in some cases on pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple scattering calculation and interpretation of X-ray absorption near-edge structure. Phys Rev B 58:7565–7576

    Article  CAS  Google Scholar 

  • Baeza A, Guillen FJ, Salas A, Manjon JL (2006) Distribution of radionuclides in different parts of a mushroom: influence of the degree of maturity. Sci Total Environ 359:255–266

    Article  CAS  PubMed  Google Scholar 

  • Banfield JP, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Nat Acad Sci USA 96:3404–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkleit A, Moll H, Bernhard G (2008) Interaction of uranium(VI) with lipopolysaccharide. Dalton Trans 21:2879–2886

    Article  PubMed  Google Scholar 

  • Barkleit A, Foerstendorf H, Li B, Rossberg A, Moll H, Bernhard G (2011) Coordination of uranium(VI) with functional groups of bacterial lipopolysaccharide studied by EXAFS and FT-IR spectroscopy. Dalton Trans 40:9868–9876

    Article  CAS  PubMed  Google Scholar 

  • Bayramoglu G, Celik G, Arica MY (2006) Studies on accumulation of uranium by fungus Lentinussajor-caju. J Hazard Mater B136:345–353

    Article  Google Scholar 

  • Bazala MA, Golda K, Bystrzejewska-Piotrowska G (2008) Transport of radiocesium in mycelium and its translocation to fruit bodies of a saprophytic macromycete. J Environ Radioact 99:1200–1202

    Article  CAS  PubMed  Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155

    Article  CAS  Google Scholar 

  • Dighton J, Clint GM, Poskitt J (1991) Uptake and accumulation of 137Cs by upland grassland soil fungi: a potential of Cs immobilization. Mycol Res 95(9):1052–1056

    Article  CAS  Google Scholar 

  • Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120

    Article  CAS  PubMed  Google Scholar 

  • Duff MC, Ramsey ML (2008) Accumulation of radiocesium by mushrooms in the environment: a literature review. J Environ Radioact 99:912–932

    Article  CAS  PubMed  Google Scholar 

  • Fomina M, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    Article  CAS  Google Scholar 

  • Fomina M, Charnock J, Bowen AD, Gadd GM (2007a) X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9(2):308–321

    Article  CAS  PubMed  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM (2007b) Fungal transformations of uranium oxides. Environ Microbiol 9(7):1696–1710

    Article  CAS  PubMed  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alvarez R, Livens F (2008) Role of fungi in the biogeochemical fate of depleted uranium. Curr Biol 18(9):R375–R377

    Article  CAS  PubMed  Google Scholar 

  • Gabriel J, Mokrejs M, Bily J, Rychlovsky P (1994) Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiol 39(2):115–118

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM, Fomina M (2011) Uranium and fungi. Geomicrobiol J 28:471–482

    Article  CAS  Google Scholar 

  • Galun M, Keller P, Malki D, Feldstein H, Gallun E, Siegel SM, Siegel BZ (1982) Removal of uranium(VI) from solution by fungal biomass and fungal wall-related biopolymers. Science 219:285–286

    Article  Google Scholar 

  • Galun M, Keller P, Malki D, Feldstein H, Galun E, Siegel S, Siegel B (1984) Removal of uranium(VI) from solution by fungal biomass: inhibition by iron. Water Air Soil Pollut 21:411–414

    Article  CAS  Google Scholar 

  • Geipel G (2006) Laser-induced fluorescence spectroscopy. In: Vij DR (ed) Handbook of applied solid state spectroscopy. Springer, New York, pp 577–593

    Chapter  Google Scholar 

  • Geipel G, Bernhard G, Rutsch M, Brendler V, Nitsche H (2000) Spectroscopic properties of uranium(VI) minerals studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 88:757–762

    Article  CAS  Google Scholar 

  • George GN, Pickering IJ (1995) EXAFSPAK: a suite of computer programs for analysis of X-ray absorption spectra. Stanford Synchrotron Radiation Laboratory, Stanford

    Google Scholar 

  • Gray SN (1998) Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem Soc Trans 26:666–670

    CAS  PubMed  Google Scholar 

  • Gray SN, Dighton J, Olsson S, Jennings DH (1995) Real-time measurement of uptake and translocation of 137Cs within mycelium of Schizophyllum commune Fr. By autoradiography followed by quantitative image analysis. New Phytol 12:449–465

    Article  Google Scholar 

  • Gray SN, Dighton J, Jennings DH (1996) Uptake and translocation of radiocaesium within differentiated mycelia of Armillaria spp. Growing in microcosms and in the field. New Phytol 132:471–482

    Article  Google Scholar 

  • Griffiths HB, Greenwood AD (1972) The concentric bodies of licheniozed fungi. Arch Microbiol 87:285–302

    Google Scholar 

  • Guibal E, Roulph C, Le Cloirec P (1992) Uranium biosorption by a filamentous fungus MucorMiehei pH effect on mechanisms and performances of uptake. Water Res 26(8):1139–1145

    Article  CAS  Google Scholar 

  • Guibal E, Roulph C, Le Cloirec P (1995) Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ Sci Technol 29:2496–2503

    Article  CAS  PubMed  Google Scholar 

  • Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. chemical thermodynamics, vol 5. Elsevier, Amsterdam

    Google Scholar 

  • Günther A, Bernhard G, Geipel G, Reich T, Roßberg A, Nitsche H (2003) Uranium speciation in plants. Radiochim Acta 91:319–328

    Article  Google Scholar 

  • Günther A, Geipel G, Bernhard G (2006) Complex formation of U (VI) with the amino acid l-threonine and the corresponding phosphate ester O-Phospho-l-threonine. Radiochim Acta 94:845–851

    Article  Google Scholar 

  • Günther A, Steudtner R, Schmeide K, Bernhard G (2011) Luminescence properties of uranium(VI) citrate and uranium(VI) oxalate species and their application in the determination of complex formation constants. Polyhedron 99:535–541

    Google Scholar 

  • Guo JM, Bai HL, Zhang H (2010) Determination of seven metal elements in Yunnan wild Schizophyllum commune Fr. by atomic absorption spectrometry. Spectrosc Spectr Anal 30(8):2289–2291

    CAS  Google Scholar 

  • Javaid Am, Bajwa R, Javaid Ar (2010) Biosorption of heavy metals using a dead macro fungus Schizophyllum commune Fries: evaluation of equilibrium and kinetic models. Pak J Bot 42(3):2105–2118

    CAS  Google Scholar 

  • Koban A, Bernhard G (2007) Uranium(VI) complexes with phospholipid model compounds –a laser spectroscopic study. J Inorg Biochem 101:750–757

    Article  CAS  PubMed  Google Scholar 

  • Koban A, Geipel G, Roßberg A, Bernhard G (2004) Uran (VI) complexes with sugar phosphates in aqueous solution. Radiochim Acta 92:903–908

    Article  CAS  Google Scholar 

  • Kulshrestha M, Venkobachar C (2008) Removal and recovery of uranium(VI) using a fungal based low-cost biosobent Ganoderma lucidum. Int J Environ Pollut 34(1–4):83–96

    Article  CAS  Google Scholar 

  • Lilly WW, Henson TL (1985) Mycelial phosphorus content of Schizophyllum commune. Mycologia 77(4):545–548

    Article  CAS  Google Scholar 

  • Locock AJ, Burns PC (2003) The crystal structure of synthetic m-autunite, Ca[(UO2)(PO4)](2)(H2O)(11). Am Mineral 88:240–244

    CAS  Google Scholar 

  • Matz W, Schell N, Bernhard G, Prokert F, Reich T, Claussner J, Oehme W, Schlenk R, Dienel S, Funke H, Eichhorn F, Betzel M, Proehl D, Strauch U, Hüttig G, Krug H, Neumann W, Brendler V, Reichel P, Denecke MA, Nitsche H (1999) ROBL—a CRG beamline for radiochemistry and materials research at the ESRF. J Synchrotron Radiat 6:1076–1085

    Article  CAS  Google Scholar 

  • Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and s-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71:5532–5543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezaguer M, Kamel el hayet N, Lounici H, Kamel Z (2013) Characterization and properties of Pleurotusmutilus fungal biomass as adsorbent of the removal of uranium(VI) from uranium leachate. J Radioanal Nucl Chem 295:393–403

    Article  CAS  Google Scholar 

  • Nakajima A, Sakaguchi T (1993) Accumulation of uranium by basidiomycetes. Appl Microbiol Biotechnol 38:574–578

    Article  CAS  Google Scholar 

  • Pang C, Liu YH, Cao XH, Li M, Huang GL, Hua R, Wang CX, Liu YT, An XF (2011) Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chem Eng J 170:1–6

    Article  CAS  Google Scholar 

  • Ramos SM, Matos BA, Paixao JA, Alte da Veiga I, Martin-Gil J (1999) I-Argininium tris(acetato-O, O‘)dioxouranium(III)-acetic acid-water (1/1/1). Acta Crystallogr Sect C Cryst Struct Commun 55:2039–2041

    Article  Google Scholar 

  • Steiner M, Linkov I, Yoshida S (2002) The role of fungi in the transfer and cycling of radionuclides in forest ecosystems. J Environ Radioact 58:217–241

    Article  CAS  Google Scholar 

  • Szabó Z, Furo I, Csoregh I (2005) Combinatorial multinuclear NMR and X-ray diffraction studies of uranium(VI)-nucleotide complexes. J Am Chem Soc 127:15236–15247

    Article  PubMed  Google Scholar 

  • Veit MT, Tavares CRG, Gomes-da-Costa SM (2005) Adsorption isotherms of copper(II) for two species of dead fungi biomass. Process Biochem 40(10):3303–3308

    Article  CAS  Google Scholar 

  • Vogel M, Günther A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U(VI) by green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 409:384–395

    Article  CAS  PubMed  Google Scholar 

  • Wolery TJ (1992) EQ3/6 A software package for the geochemical modeling of aqueous system report UCRL-MA-110662 part 1. Lawrence Livermore National Laboratory, California

    Google Scholar 

  • Yang HB, Tan N, Wu FJ, Liu HJ, Sun M, She ZG, Lin YC (2012) Biosorption of uranium(VI) by a mangrove endophytic fungus Fusarium sp. #ZZF51 from the South China Sea. J Radioanal Nucl Chem 292:1011–1016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the BMBF under contract No. 0258517 and Grants CGL2009-09760 and CGL2012 (Ministerio de Ciencia e Innovación, Spain). The authors thank for the experimental support during the EXAFS measurements by the ROBL group members A. Scheinost and C. Henning at the ESRF in Grenoble, France. We also thank R. Vochten (University of Antwerp) for providing the m-autunite sample and U. Schaefer, A. Ritter and C. Eckardt for the realization of different chromatographic and ICP-MS measurements. We acknowledge the assistance at the HAADF-STEM measurements of Maria del Mar Abad Ortega, Isabel Guerra Tschuschke, Concepcion Hernandez Castillo (Electron Microscopy Services), University of Granada, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alix Günther.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günther, A., Raff, J., Merroun, M.L. et al. Interaction of U(VI) with Schizophyllum commune studied by microscopic and spectroscopic methods. Biometals 27, 775–785 (2014). https://doi.org/10.1007/s10534-014-9772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9772-1

Keywords

Navigation