Skip to main content
Log in

Engineering a native homoethanol pathway in Escherichia coli B for ethanol production

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A native homoethanol pathway (pyruvate-to-acetyl-CoA-to-acetaldehyde-to-ethanol) was engineered in Escherichia coli B. The competing fermentation pathways were eliminated by chromosomal deletions of the genes encoding for fumarate reductase (frdABCD), lactate dehydrogenase (ldhA), acetate kinase (ackA), and pyruvate formate lyase (pflB). For redox balance and anaerobic cell growth, the pyruvate dehydrogenase complex (aceEF-lpd, a typical aerobically-expressed operon) was highly expressed anaerobically using a native anaerobic inducible promoter. The resulting strain SZ420 (ΔfrdBC ΔldhA ΔackA ΔfocA-pflB ΔpdhR::pflBp6-pflBrbs-aceEF-lpd) contains no foreign genes and/or promoters and efficiently ferments glucose and xylose into ethanol with a yield of 90% under anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25

    Article  PubMed  CAS  Google Scholar 

  • Buckley M, Wall J (2006) Microbial energy conversion. A report from the American Academy of Microbiology. Washington, DC

  • Cassey B, Guest JR, Attwood MM (1998) Environmental control of pyruvate dehydrogenase complex expression in Escherichia coli. FEMS Microbiol Lett 159:325–329

    Article  PubMed  CAS  Google Scholar 

  • Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT (2004) Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 186:7593–7600

    Article  PubMed  CAS  Google Scholar 

  • Hinman LM, Blass JP (1981) An NADH-linked spectrophotometric assay for pyruvate dehydrogenase complex in crude tissue homogenates. J Biol Chem 256:6583–6586

    PubMed  CAS  Google Scholar 

  • Ho NMY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    PubMed  CAS  Google Scholar 

  • Ingram LO, Aldrich HC, Borges AC, Causey TB, Martinez A, Morales F, Saleh A, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  PubMed  CAS  Google Scholar 

  • Kaiser M, Sawers G (1995) Fnr activates transcription from the P6 promoter of the pfl operon in vitro. Mol Microbiol 18:331–342

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • Pospai G, Koob MD, Kirkpatrick HA, Blattner FC (1997) Versatile insertation plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 179:4426–4428

    Google Scholar 

  • Quail MA, Guest JR (1995) Purification, characterization and mode of action of PdhR, the transcriptional repressor of the pdhR-aceEF-lpd operon of Escherichia coli. Mol Microbiol1 5:519–529

    Article  Google Scholar 

  • Quail MA, Hayden DJ, Guest JR (1994) The pdhR-aceEF-lpd operon of Escherichia coli expresses the pyruvate dehydrogenase complex. Mol Microbiol 12:95–104

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sawers G, Bock A (1989) Novel transcriptional control of the pyruvate formate-lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. J Bacteriol 171:2485–2498

    PubMed  CAS  Google Scholar 

  • Sawers G, Suppmann B (1992) Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the Arc A and FNR proteins. J Bacteriol 174:3474–3478

    PubMed  CAS  Google Scholar 

  • Scislowski PWD, Davis J (1986) A selective spectrophotometric assay of pyruvate dehydrogenase activity. Analytical Biochem 155:400–404

    Article  CAS  Google Scholar 

  • van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leewenhoek 90:391–418

    Article  CAS  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of apentose pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Yomano LP, Shanmugam KT, Ingram LO (2005) Fermentation of 10% (w/v) sugar to d-lactate by engineered Escherichia coli B. Biotechnol Lett 27:1891–1896

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Shanmugam KT, Yomano LP, Grabar TB, Ingram LO (2006) Fermentation of 12%glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol Lett 28:663–670

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the startup fund, the Research and Artistry grant, and the PMBC research incentive fund of Northern Illinois University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Iverson, A.G. & Grayburn, W.S. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30, 335–342 (2008). https://doi.org/10.1007/s10529-007-9544-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9544-x

Keywords

Navigation