Skip to main content
Log in

Inhibition of the entomopathogenic fungus Metarhizium anisopliae sensu lato in vitro by the bed bug defensive secretions (E)-2-hexenal and (E)-2-octenal

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The two major aldehydes (E)-2-hexenal and (E)-2-octenal emitted as defensive secretions by bed bugs Cimex lectularius L. (Hemiptera: Cimicidae), inhibit the in vitro growth of an isolate of Metarhizium anisopliae sensu lato (s.l.) (Metsch.) Sokorin (Hypocreales: Clavicipitaceae) (ARSEF 1548). These chemicals inhibit fungal growth by direct contact and via indirect exposure (“fumigation”). Fumigation with (E)-2-octenal for as little as 0.5 h was sufficient to inhibit all fungal growth. Bed bugs placed on filter paper treated with an isolate of M. anisopliae s.l. conidia in the absence of (E)-2-octenal exhibited 99 % mortality after one week. However, bed bugs placed on fungal-treated filter paper and exposed to (E)-2-octenal at 1 h experienced 10 % mortality. The inhibition of fungal growth by bed bug aldehydes is discussed in the context of other biotic and abiotic barriers to infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldrich JR (1988) Chemical ecology of the Heteroptera. Annu Rev Entomol 33:211–238

    Article  Google Scholar 

  • Barbarin AM, Jenkins NE, Rajotte EG, Thomas MB (2012) A preliminary evaluation of the potential of Beauveria bassiana for bed bug control. J Invertbr Pathol 111:82–85

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker BM, Walker SC (2014) lme4: linear mixed effects models using Eigen and S4. R package version 1.1–7. Available via http://CRAN.R-project.org/package=lme4. Cited 20 Mar 2015

  • Battinelli L, Daniele C, Cristiani M, Bisignano G, Saija A, Mazzanti G (2006) In vitro antifungal and anti-elastase activity of some aliphatic aldehydes from Olea europaea L. fruit. Phytomedicine 13:558–563

    Article  CAS  PubMed  Google Scholar 

  • Benoit JB, Phillips SA, Croxall TJ, Christensen BS, Yoder JA, Denlinger DL (2009) Addition of alarm pheromone components improves the effectiveness of desiccant dusts against Cimex lectularius. J Med Entomol 46:572–579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bisignano G, Laganá MG, Trombetta D, Arena S, Nostro A, Uccella N, Mazzanti G, Saija A (2001) In vitro antibacterial activity of some aliphatic aldehydes from Olea eropaea L. FEMS Microbiol Lett 198:9–13

    Article  CAS  PubMed  Google Scholar 

  • Blanford S, Chan BHK, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB (2005) Fungal pathogen reduces potential for malaria transmission. Science 308:1638–1641

    Article  CAS  PubMed  Google Scholar 

  • Braga GUL, Flint SD, Messias CL, Anderson AJ (2001) Effect of UV-B on conidia and germlings of the entompathogenic hyphomycete Metarhizium anisopliae. Mycol Res 105:874–882

    Article  Google Scholar 

  • Bukhari T, Takken W, Koenraadt CJM (2011) Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasites & Vector 4:23

    Article  Google Scholar 

  • Chouvenc T, Su N-Y (2010) Apparent synergy among defense mechanisms in subterranean termites (Rhinotermitidae) against epizootic events: limits and potential for biological control. J Econ Entomol 103:1327–1337

    Article  PubMed  Google Scholar 

  • Cleveland TE, Carter-Wientjes CH, DeLucca AJ, Boué SM (2009) Effect of soybean volatile compounds on Aspergillus flavus growth and aflatoxin production. J Food Sci 74:84–87

    Article  Google Scholar 

  • Collins RP (1968) Carbonyl compounds produced by bed bug Cimex lectularius. Ann Entomol Soc Am 61:1338–1339

    Article  CAS  Google Scholar 

  • de Faria MR, Wraigt SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  Google Scholar 

  • Feldlaufer MF, Harlan HJ, Miller DM (2014) Laboratory rearing of bed bugs. In: Mamamorosch K, Mahmood F (eds) Rearinig animal and plant vectors, 1st edn. CRC Press, Boca Raton, pp 118–140

  • Fernandes S, Simoes M, Dias N, Santos C, Lima N (2012) Fungicidal activity of microbicides. In: Fraise A, Maillard J-Y, Sattar S (eds) Russell, Hugo and Ayliffe’s principles and practice of disinfection, preservation and sterilization, 5th edn. Wiley, UK, pp 142–154

    Chapter  Google Scholar 

  • Gołębiowski M, Maliński E, Boguś MI, Kumirska J, Stepnowski P (2008) The cuticular fatty acids of Calliphora vicina, Dendrolimus pini and Galleria mellonella larvae and their role in resistance to fungal infection. Insect Biochem Mol Biol 38:619–627

    Article  PubMed  Google Scholar 

  • Gross J, Schumacher K, Schmidtberg H, Vilcinskas A (2008) Protected by fumigants: beetle perfumes in antimicrobial defense. J Chem Ecol 34:179–188

    Article  CAS  PubMed  Google Scholar 

  • Hajek AE, Delalibera I Jr (2010) Fungal pathogens as classical biological control agents against arthropods. BioControl 55:147–158

    Article  Google Scholar 

  • Hajek AE, St Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322

    Article  Google Scholar 

  • Hänel H (1982) The life cycle of the insect pathogenic fungus Metarhizium anisopliae in the termite Nasutitermes exitiosus. Mycopathol 80:137–145

    Article  Google Scholar 

  • Harraca V, Ryne C, Ignell R (2010) Nymphs of the common bed bug (Cimex lectularius) produce anti-aphrodisiac defense against conspecific males. BMC Biol 8:121

    Article  PubMed Central  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Inglis GD, Enkerli J, Goettel MS (2012) Laboratory techniques for entomopathogenic fungi: Hypocreales. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, 2nd edn. Elsevier Ltd., London, pp 189–251

    Chapter  Google Scholar 

  • Jaronski ST (2010) Ecological factors in the inundative use of entomopathogens. BioControl 55:159–185

    Article  Google Scholar 

  • Kilpinen O, Liu D, Adamsen APS (2012) Real-time measurement of volatile chemicals released by bed bugs during mating activities. PLoS ONE 7:e50981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubo A, Kubo I (1995) Antimicrobial agents from Tanacetum balsamita. J Nat Prod 58:1565–1569

    Article  CAS  Google Scholar 

  • Lacey LA, Solter LF (2012) Initial handling and diagnosis of diseased invertebrates. In: Lacey LA (ed) Manual of techniques in invertebrate pathology, 2nd edn. Academic Press, Amsterdam, pp 1–14

    Chapter  Google Scholar 

  • Levinson HZ, Bar Ilan AR (1971) Assembling and alerting scents produced by the bed bug Cimex lectularius L. Experientia 27:102–103

    Article  CAS  PubMed  Google Scholar 

  • Levinson HZ, Levinson AR, Maschwitz U (1974) Action and composition of the alarm pheromone of the bedbug Cimex lectularius L. Naturwissenschaften 61:684–685

    Article  CAS  PubMed  Google Scholar 

  • McCauley VJE, Zacharuk RY (1968) Histopathology of green muscardine in larvae of four species of elateridae (Coleoptera). J Invertbr Pathol 12:444–459

  • Moino A Jr, Alves SB, Lopes RB, Oliveira PM, Neves J, Pereira RM, Vieira A (2002) External development of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in the subterranean termite Heterotermes tenuis. Sci Agric 59:267–273

    Article  Google Scholar 

  • Myles TG (2002) Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae. Sociobiol 40:243–255

    Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4:357–374

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at http://www.R-project.org/. Accessed 25 Aug 2014

  • Schildknecht H, Holoubek K, Weis KH, Krämer H (1964) Defensive substances of the arthropods, their isolation and identification. Agn Chem (international edition) 3:73–82

    Article  Google Scholar 

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    Article  CAS  PubMed  Google Scholar 

  • Siljander E, Gries R, Khaskin K, Gries G (2008) Identification of the airborne aggregation pheromone of the common bed bug, Cimex lectularius. J Chem Ecol 34:708–718

    Article  CAS  PubMed  Google Scholar 

  • Sosa-Gomez DR, Boucias DG, Nation JL (1997) Attachment of Metarhizium anisopliae to the southern green stink bug Nezara viridula cuticle and fungistatic effect of cuticular lipids and aldehydes. J Invertbr Pathol 69:31–39

    Article  CAS  Google Scholar 

  • Trombetta D, Saija A, Bisignano G, Arena S, Caruso S, Mazzanti G, Uccella N, Castelli F (2002) Study on the mechanisms of antibacterial action of some plant α, β—unsaturated aldehydes. Lett Appl Microbiol 35:285–290

    Article  CAS  PubMed  Google Scholar 

  • Ulrich KR, Feldlaufer MF, Kramer M, St. Leger RJ (2014) Exposure of bed bugs to Metarhizium anisopliae at different humidities. J Econ Entomol 107:2190–2195

    Article  Google Scholar 

  • Vega FE, Meyling NV, Luangsa-ard JJ, Blackwell M (2012) Fungal entomopathogens. In: Vega F, Kaya H (eds) Insect pathology, 2nd edn. Elsevier, London, pp 171–220

    Chapter  Google Scholar 

  • Vieira CR, Blassioli-Moraes MC, Borges M, Pires CSS, Sujii ER, Laumann RA (2014) Field evaluation of (E)-2-hexenal efficacy for behavioral manipulation of egg parasitoids in soybean. BioControl 59:525–537

    Article  Google Scholar 

  • Vilcinskas A, Götz P (1999) Parasitic fungi and their interactions with the insect immune system. Adv Parasitol 43:267–313

    Article  Google Scholar 

  • Wang C, St Leger RJ (2005) Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot Cell 4:937–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson K, Cotter SC, Reeson AF, Pell JK (2001) Melanism and disease resistance in insects. Ecol Lett 4:637–649

    Article  Google Scholar 

  • Yeo H, Pell JK, Alderson PG, Clark SJ, Pye BJ (2003) Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Manag Sci 59:156–165

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920

    Article  Google Scholar 

Download references

Acknowledgments

We thank Barbara Thorne (University of Maryland, College Park, USA) for guidance and reviewing the manuscript. We also thank members of the Armed Forces Pest Management Board (Silver Spring MD, USA), and personnel at the Walter Reed National Military Medical Center (Bethesda MD, USA) for their help in obtaining the blood products used to maintain insect colonies. This project was funded in part by the University of Maryland’s Department of Entomology’s Gahan Fellowship. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Ulrich.

Additional information

Handling Editor: Nicolai Meyling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulrich, K.R., Feldlaufer, M.F., Kramer, M. et al. Inhibition of the entomopathogenic fungus Metarhizium anisopliae sensu lato in vitro by the bed bug defensive secretions (E)-2-hexenal and (E)-2-octenal. BioControl 60, 517–526 (2015). https://doi.org/10.1007/s10526-015-9667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-015-9667-2

Keywords

Navigation