Skip to main content
Log in

Heterogeneous Airway Versus Tissue Mechanics and Their Relation to Gas Exchange Function During Mechanical Ventilation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We have advanced a commercially available ventilator (NPB840, Puritan Bennett/Tyco Healthcare, Pleasanton, CA) to deliver an Enhanced Ventilation Waveform (EVW). This EVW delivers a broadband waveform that contains discrete frequencies blended to provide a tidal breath, followed by passive exhalation. The EVW allows breath-by-breath estimates of frequency dependence of lung and total respiratory resistance (R) and elastance (E) from 0.2 to 8 Hz. We hypothesized that the EVW approach could provide continuous ventilation simultaneously with an advanced evaluation of mechanical heterogeneities under heterogeneous airway and tissue disease conditions. We applied the EVW in five sheep before and after a bronchial challenge and an oleic acid (OA) acute lung injury model. In all sheep, the EVW maintained gas exchange during and after bronchoconstriction, as well as during OA injury. Data revealed a range of disease conditions from mild to severe with heterogeneities and airway closures. Correlations were found between the arterial partial pressure of oxygen (PaO2) and the levels and frequency-dependent features of R and E that are indicative of mechanical heterogeneity and tissue disease. Lumped parameter models provided additional insight on heterogeneous airway and tissue disease. In summary, information obtained from EVW analysis can provide enhanced guidance on the efficiency of ventilator settings and on patient status during mechanical ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avanzolini, G., P. Barbini, F. Bernardi, G. Cevenini, and G. Gnudi. Role of the mechanical properties of tracheobronchial airways in determining the respiratory resistance time course. Ann. Biomed. Eng. 29:575–586, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Baldi, S., M. Miniati, C. R. Bellina, L. Battolla, G. Catapano, E. Begliomini, D. Giustini, and C. Giuntini. Relationship between extent of pulmonary emphysema by high-resolution computed tomography and lung elastic recoil in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 164:585–589, 2001.

    CAS  PubMed  Google Scholar 

  3. Barnas, G. M., P. Harinath, M. D. Green, B. Suki, D. W. Kaczka, and K. R. Lutchen. Influence of waveform and analysis technique on lung and chest wall properties. Respir. Physiol. 96:331–344, 1994.

    Article  CAS  PubMed  Google Scholar 

  4. Brown, R. H., and E. M. Wagner. Mechanisms of bronchoprotection by anesthetic induction agents: Propofol versus ketamine. Anesthesiology. 90:822–828, 1999.

    Article  CAS  PubMed  Google Scholar 

  5. Coulson, N. M., A. J. Januszkiewicz, and G. R. Ripple. Physiological responses of sheep to two hours anaesthesia with diazepam-ketamine. Vet. Rec. 129:329–332, 1991.

    CAS  PubMed  Google Scholar 

  6. Dreyfuss, D., and G. Saumon. Ventilator-induced lung injury: Lessons from experimental studies. Am. J. Respir. Crit. Care Med. 157:294–323, 1998.

    CAS  PubMed  Google Scholar 

  7. Farre, R., M. Ferrer, M. Rotger, and D. Navajas. Servocontrolled generator to measure respiratory impedance from 0.25 to 26 Hz in ventilated patients at different PEEP levels. Eur. Respir. J. 8:1222–1227, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Gattinoni, L., L. D’Andrea, P. Pelosi, G. Vitale, A. Pesenti, and R. Fumagalli. Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA. 269:2122–2127, 1993.

    Article  CAS  PubMed  Google Scholar 

  9. Gillis, H. L., and K. R. Lutchen. Airway remodeling in asthma amplifies heterogeneities in smooth muscle shortening causing hyperresponsiveness. J. Appl. Physiol. 86:2001–2012, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Gillis, H. L., and K. R. Lutchen. How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: A morphometric model. Ann. Biomed. Eng. 27:14–22, 1999.

    Article  CAS  PubMed  Google Scholar 

  11. Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 72:168–178, 1992.

    Article  CAS  PubMed  Google Scholar 

  12. Henderson, A. C., E. P. Ingenito, H. Atileh, E. Israel, B. Suki, and K. R. Lutchen. How does airway inflammation modulate asthmatic airway constriction? An antigen challenge study. J. Appl. Physiol. 95:873–882; Discussion 863, 2003.

    CAS  PubMed  Google Scholar 

  13. Hickling, K. G. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: A mathematical model of acute respiratory distress syndrome lungs. Am. J. Respir. Crit. Care Med. 163:69–78, 2001.

    CAS  PubMed  Google Scholar 

  14. Hubler, M., J. E. Souders, E. D. Shade, N. L. Polissar, C. Schimmel, and M. P. Hlastala. Effects of vaporized perfluorocarbon on pulmonary blood flow and ventilation/perfusion distribution in a model of acute respiratory distress syndrome. Anesthesiology. 95:1414–1421, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Ito, S., E. P. Ingenito, S. P. Arold, H. Parameswaran, N. T. Tgavalekos, K. R. Lutchen, and B. Suki. Tissue heterogeneity in the mouse lung: effects of elastase treatment. J. Appl. Physiol. 97:204–212, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Kaczka, D. W., G. M. Barnas, B. Suki, and K. R. Lutchen. Assessment of time-domain analyses for estimation of low-frequency respiratory mechanical properties and impedance spectra. Ann. Biomed. Eng. 23:135–151, 1995.

    CAS  PubMed  Google Scholar 

  17. Kaczka, D. W., E. P. Ingenito, S. C. Body, S. E. Duffy, S. J. Mentzer, M. M. DeCamp, and K. R. Lutchen. Inspiratory lung impedance in COPD: Effects of PEEP and immediate impact of lung volume reduction surgery. J. Appl. Physiol. 90:1833–1841, 2001.

    CAS  PubMed  Google Scholar 

  18. Kaczka, D. W., E. P. Ingenito, E. Israel, and K. R. Lutchen. Airway and lung tissue mechanics in asthma. Effects of albuterol. Am. J. Respir. Crit. Care Med. 159:169–178, 1999.

    CAS  PubMed  Google Scholar 

  19. Kaczka, D. W., E. P. Ingenito, and K. R. Lutchen. Technique to determine inspiratory impedance during mechanical ventilation: Implications for flow limited patients. Ann. Biomed. Eng. 27:340–355, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. Kaczka, D. W., E. P. Ingenito, B. Suki and K. R. Lutchen. Partitioning airway and lung tissue resistances in humans: Effects of bronchoconstriction. J. Appl. Physiol. 82:1531–1541, 1997.

    CAS  PubMed  Google Scholar 

  21. Lauzon, A. M., and J. H. Bates. Estimation of time-varying respiratory mechanical parameters by recursive least squares. J. Appl. Physiol. 71:1159–1165, 1991.

    CAS  PubMed  Google Scholar 

  22. Lutchen, K. R., and H. Gillis. Relationship between heterogeneous changes in airway morphometry and lung resistance and elastance. J. Appl. Physiol. 83:1192–1201, 1997.

    CAS  PubMed  Google Scholar 

  23. Lutchen, K. R., Z. Hantos, F. Petak, A. Adamicza, and B. Suki. Airway inhomogeneities contribute to apparent lung tissue mechanics during constriction. J. Appl. Physiol. 80:1841–1849, 1996.

    CAS  PubMed  Google Scholar 

  24. Lutchen, K. R., A. Jensen, H. Atileh, D. W. Kaczka, E. Israel, B. Suki, and E. P. Ingenito. Airway constriction pattern is a central component of asthma severity: The role of deep inspirations. Am. J. Respir. Crit. Care Med. 164:207–215, 2001.

    CAS  PubMed  Google Scholar 

  25. Lutchen, K. R., D. W. Kaczka, B. Suki, G. Barnas, G. Cevenini, and P. Barbini. Low-frequency respiratory mechanics using ventilator-driven forced oscillations. J Appl. Physiol. 75:2549–2560, 1993.

    CAS  PubMed  Google Scholar 

  26. Lutchen, K. R., B. Suki, Q. Zhang, F. Petak, B. Daroczy, and Z. Hantos. Airway and tissue mechanics during physiological breathing and bronchoconstriction in dogs. J. Appl. Physiol. 77:373–385, 1994.

    CAS  PubMed  Google Scholar 

  27. Maggiore, S. M., J. C. Richard, and L. Brochard. What has been learnt from P/V curves in patients with acute lung injury/acute respiratory distress syndrome. Eur. Respir. J. Suppl. 42:22s–26s, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Muscedere, J. G., J. B. Mullen, K. Gan, and A. S. Slutsky. Tidal ventilation at low airway pressures can augment lung injury. Am. J. Respir. Crit. Care Med. 149:1327–1334, 1994.

    CAS  PubMed  Google Scholar 

  29. Navajas, D., R. Farre, J. Canet, M. Rotger, and J. Sanchis. Respiratory input impedance in anesthetized paralyzed patients. J. Appl. Physiol. 69:1372–1379, 1990.

    CAS  PubMed  Google Scholar 

  30. Norton, J. P. An Introduction to Identification. London; New York: Academic Press, 1985, 310.

    Google Scholar 

  31. Otis, A. B., C. B. McKerrow, R. A. Bartlett, J. Mead, M. B. McIlroy, N. J. Selverstone, and E. P. Radford. Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol. 8:427–443, 1956.

    CAS  PubMed  Google Scholar 

  32. Overbeck, M. C., T. Pranikoff, C. M. Yadao, and R. B. Hirschl. Efficacy of perfluorocarbon partial liquid ventilation in a large animal model of acute respiratory failure. Crit. Care Med. 24:1208–1214, 1996.

    Article  CAS  PubMed  Google Scholar 

  33. Petak, F., Z. Hantos, A. Adamicza, T. Asztalos, and P. D. Sly. Methacholine-induced bronchoconstriction in rats: Effects of intravenous vs. aerosol delivery. J. Appl. Physiol. 82:1479–1487, 1997.

    Article  CAS  PubMed  Google Scholar 

  34. Petak, F., Z. Hantos, A. Adamicza, and B. Daroczy. Partitioning of pulmonary impedance: Modeling vs. alveolar capsule approach. J. Appl. Physiol. 75:513–521, 1993.

    CAS  PubMed  Google Scholar 

  35. Polese, G., A. Rossi, L. Appendini, G. Brandi, J. H. Bates, and R. Brandolese. Partitioning of respiratory mechanics in mechanically ventilated patients. J. Appl. Physiol. 71:2425–2433, 1991.

    CAS  PubMed  Google Scholar 

  36. Samee, S., T. Altes, P. Powers, E. E. de Lange, J. Knight-Scott, G. Rakes, J. P. Mugler, 3rd, J. M. Ciambotti, B. A. Alford, J. R. Brookeman, and T. A. Platts-Mills. Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic resonance: Assessment of response to methacholine and exercise challenge. J. Allergy Clin. Immunol. 111:1205–1211, 2003.

    Article  CAS  PubMed  Google Scholar 

  37. Schiller, H. J., J. Steinberg, J. Halter, U. McCann, M. DaSilva, L. A. Gatto, D. Carney, and G. Nieman. Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung. Crit. Care Med. 31:1126–1133, 2003.

    Article  PubMed  Google Scholar 

  38. Suki, B., A. L. Barabasi, and K. R. Lutchen. Lung tissue viscoelasticity: A mathematical framework and its molecular basis. J. Appl. Physiol. 76:2749–2759, 1994.

    CAS  PubMed  Google Scholar 

  39. Suki, B., F. Petak, A. Adamicza, B. Daroczy, K. R. Lutchen, and Z. Hantos. Airway and tissue constrictions are greater in closed than in open-chest conditions. Respir. Physiol. 108:129–141, 1997.

    Article  CAS  PubMed  Google Scholar 

  40. Suki, B., H. Yuan, Q. Zhang, and K. R. Lutchen. Partitioning of lung tissue response and inhomogeneous airway constriction at the airway opening. J. Appl. Physiol. 82:1349–1359, 1997.

    CAS  PubMed  Google Scholar 

  41. Tawhai, M. H., P. Hunter, J. Tschirren, J. Reinhardt, G. McLennan, and E. A. Hoffman. CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97:2310–2321, 2004.

    Article  PubMed  Google Scholar 

  42. Terragni, P. P., G. L. Rosboch, A. Lisi, A. G. Viale, and V. M. Ranieri. How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients. Eur. Respir. J. Suppl. 42:15s–21s, 2003.

    Article  CAS  PubMed  Google Scholar 

  43. Thorpe, C. W., and J. H. Bates. Effect of stochastic heterogeneity on lung impedance during acute bronchoconstriction: A model analysis. J. Appl. Physiol. 82:1616–1625, 1997.

    CAS  PubMed  Google Scholar 

  44. Venegas, J. G., R. S. Harris, and B. A. Simon. A comprehensive equation for the pulmonary pressure–volume curve. J. Appl. Physiol. 84:389–395, 1998.

    CAS  PubMed  Google Scholar 

  45. Vieira, S. R., L. Puybasset, Q. Lu, J. Richecoeur, P. Cluzel, P. Coriat, and J. J. Rouby. A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure–volume curve. Am. J. Respir. Crit. Care Med. 159:1612–1623, 1999.

    CAS  PubMed  Google Scholar 

  46. Wetter, T. J., C. M. St Croix, D. F. Pegelow, D. A. Sonetti, and J. A. Dempsey. Effects of exhaustive endurance exercise on pulmonary gas exchange and airway function in women. J. Appl. Physiol. 91:847–858, 2001.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Lutchen PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellardine, C.L., Ingenito, E.P., Hoffman, A. et al. Heterogeneous Airway Versus Tissue Mechanics and Their Relation to Gas Exchange Function During Mechanical Ventilation. Ann Biomed Eng 33, 626–641 (2005). https://doi.org/10.1007/s10439-005-1540-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-1540-5

Keywords

Navigation