Skip to main content
Log in

Multilamination of flows in planar networks of rotating microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We describe a new multilamination technique to accelerated mixing of centrifugally pumped flows through a simple network of preferentially radial, low-aspect-ratio microchannels. Mixing by multilamination is enforced by planar split-and-recombine structures, consisting of a common inlet for two concurrent centrifugal flows, and a transient region of parallel microchannels which merge again into one common outlet. A repatterning of flow is observed in each parallel channel which is induced by the Coriolis pseudo force. In a distinct regime of the parameter space spanned by the speed of rotation, the channel geometry as the viscosity (and density) of the liquids, a multilamination of flow is achieved at the entrance of the common outlet channel. We also present parallelization and cascading strategies to further enhance the homogeneity and throughput of mixing by multilamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Burtis CA, Mailen CJ, Johnson WF, Scott CD, Tiffany TO, Anderson NG (1972) Development of miniature fast analyzer. Clin Chem 18(8):753–761

    PubMed  Google Scholar 

  • Schembri CT, Ostoich V, Lingane PJ, Burd TL, Buhl SN (1992) Portable simultaneous multiple analyte whole-blood analyzer for point-of-care testing. Clin Chem 38(9):1665–1670

    PubMed  Google Scholar 

  • Madou MJ, Kellogg GJ (1998) LabCD: a centrifuge-based microfluidic platform for diagnostics. In: Cohn GE (ed) Proceedings of SPIE—Systems & Technologies for Clin. Diagn. & Drug Disc, volume 3259, pp 80–93

  • Duffy DC, Gillis HL, Lin J, Sheppard NF, Kellogg GJ (1999) Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71(20):4669–4678

    Article  Google Scholar 

  • Ekstrand G, Holmquist C, Örlefors AE, Hellman B, Larsson A, Andersson P (2000) Microfluidics in a rotating CD. In: van den Berg A, Olthuis W, Bergveld P (eds) Proceedings of the micro total analysis systems symposium (μTAS 2000) May 14–18, Enschede, The Netherlands. Kluwer, The Netherlands, pp 311–314

  • Zeng J, Banerjee D, Deshpande M, Gilbert JR (2000) Design analyses of capillary burst valves in centrifugal microfluidics. In: van den Berg A, Olthuis W, Bergveld P (eds) Proceedings of the micro total analysis systems symposium (μTAS 2000) May 14–18, Enschede, The Netherlands. Kluwer, pp 493–496

  • Zeng J, Deshpande M, Greiner K, Gilbert JR (2000) Fluidic capacitance model of capillary-driven stop valves. In: ASME international mechanical engineering congress and exposition (IMECE’00)

  • Inganäs M, Ekstrand G, Engström J, Eckersten A, Dérand H, Andersson P (2001) Quantitative bio-affinity assays at nanoliter scale, parallel analysis of crude protein mixtures. In: Ramsey JM, van den Berg A (eds) Proceedings of the micro total analysis systems symposium (μTAS 2001), October 21–25, Monterey, pp 91–92

  • Thorsén G, Ekstrand G, Selditz U, Wallenborg SR, Andersson P (2003) Integrated microfluidics for parallel processing of proteins in a CD microlaboratory. In: Northrup MA, Jensen KF, Harrison DJ (eds) Proceedings of the 7th international conference on micro total analysis systems (μTAS 2003), October 5–9, Squaw Valley, volume 1 of MESA Monographs, Kluwer, pp 457–460

  • Ducrée J, Brenner T, Glatzel T, Zengerle R (2003) A Coriolis-based split-and-recombine laminator for ultrafast mixing on rotating disks. In: Northrup MA, Jensen KF, Harrison DJ (eds) Proceedings of the 7th international conference on micro total analysis systems (μTAS 2003), October 5–9, Squaw Valley, volume 1 of MESA Monographs, Kluwer, pp 603–606

  • Gustafsson M, Hirschberg D, Palmberg C, Jörnvall H, Bergman T (2004) Integrated sample preparation and MALDI mass spectrometry on a microfluidic compact disk. Anal Chem 76(2):345–350

    Article  PubMed  Google Scholar 

  • Kim J, Jang SH, Jia G, Zoval JV, da Silva NA, Madou MJ (2004) Cell lysis on a microfluidic CD (compact disc). Lab Chip 4(5):516–522

    Article  PubMed  Google Scholar 

  • Puckett LG, Dikici E, Lai S, Madou M, Bachas LG, Daunert S (2004) Investigation into the applicability of the centrifugal microfluidics platform for the development of protein-ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter. Anal Chem 76(24):7263–7268

    Article  PubMed  Google Scholar 

  • McNeely MR, Spute MK, Tusneem NA, Oliphant AR (1999) Hydrophobic microfluidics. In: Ahn CH, Frazier AB (eds) Proceedings of SPIE—microfluidic devices and systems II, volume 3877, pp 210–220

  • Atencia J, Beebe DJ (2003) An oscillating ferromagnetic micropump utilizing centrifugal force. In: Northrup MA, Jensen KF, Harrison DJ (eds) Proceedings of the 7th international conference on micro total analysis systems (μTAS 2003), October 5–9, Squaw Valley, pp 883–886

  • Ryu KS, Shaikh K, Goluch E, Fan Z, Liu C (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4(6):608–613

    Article  PubMed  Google Scholar 

  • Grumann M, Geipel A, Riegger L, Zengerle R, Ducrée J (2004) Magneto-hydrodynamic micromixing for centrifugal lab-on-a-disk platforms. In: Laurell T, Nilsson J, Jensen KF, Harrison DJ, Kutter JP (eds) Proceedings of the 8th international conference on micro total analysis systems (μTAS 2004), September 26–30, Malmö, Sweden, volume 1, RSC, pp 593–595

  • Grumann M, Geipel A, Riegger L, Zengerle R, Ducrée J (2005) Batch-mode mixing with magnetic beads on centrifugal microfluidic platforms. Lab Chip 5(5):560–565

    Article  PubMed  Google Scholar 

  • Stroock AD, Dertinger SK, Adjari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651

    Article  Google Scholar 

  • Lim D, Kamotani Y, Cho B, Mazumder J, Takayama S (2003) Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 3(4):318–323

    Article  PubMed  Google Scholar 

  • Wang H, Iovenitti P, Harvey E, Masood S (2003) Numerical investigation of mixing in microchannels with patterned grooves. J Micromech Microeng 13(6):801–808

    Article  Google Scholar 

  • Kim DS, Lee SW, Kwon TH, Lee SS (2004) A barrier embedded chaotic micromixer. J Micromech Microeng 14(6):798–805

    Article  Google Scholar 

  • Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866

    Article  Google Scholar 

  • Gelfgat AY, Yarin AL, Bar-Yoseph PZ (2003) Dean vortices-induced enhancement of mass transfer through an interface separating two immiscible liquids. Phys Fluid 15(2):330–347

    Article  MathSciNet  Google Scholar 

  • Howell PB Jr, Mott DR, Golden JP, Ligler FS (2004) Design and evaluation of a Dean vortex-based micromixer. J Micromech Microeng 4(6):663–669

    Google Scholar 

  • Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Sys 9(2):190–197

    Article  Google Scholar 

  • Beebe DJ, Adrian RJ, Olsen MG, Stremler MA, Aref H, Jo B-H (2001) Passive mixing in microchannels: fabrication and flow experiments. Méch Ind 2(4):343–348

    Article  Google Scholar 

  • Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem 74(16):4279–4286

    Article  PubMed  Google Scholar 

  • Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271

    Article  PubMed  Google Scholar 

  • Jen C-P, Wu C-Y, Lin Y-C, Wub C-Y (2003) Design and simulation of the micromixer with chaotic advection in twisted microchannels. Lab Chip 3(2):77–81

    Article  PubMed  Google Scholar 

  • Chen H, Meiners J-C (2004) Topologic mixing on a microfluidic chip. Appl Phys Lett 84(12):2193–2195

    Article  Google Scholar 

  • Mingqiang Yi, Haim HB (2004) The kinematics of bend-induced mixing in micro-conduits. Int J Heat Fluid Flow 24(5):645–656

    Google Scholar 

  • Park S-J, Kim JK, Park J, Chung S, Chung C, Chang JK (2004) Rapid three-dimensional passive rotation micromixer using the breakup process. J Micromech Microeng 14(1):6–14

    Article  Google Scholar 

  • Miyake R, Lammerink TSJ, Elwenspoek M, Fluitman JHJ (1993) Micro mixer with fast diffusion. In: Proceedings of IEEE micro electro mechanical systems (MEMS’93), February 7–10, Fort Lauderdale, Florida, pp 248–253

  • Elwenspoek M, Lammerink TSJ, Miyake R, Fluitman JHJ (1994) Towards integrated microliquid handling systems. J Micromech Microeng 4(4):227–245

    Article  Google Scholar 

  • Miyake R, Tsuzuki K, Takagi T, Imai K (1997) A highly sensitive and small flow-type chemical analysis system with integrated absorptiometric micro-flowcell. In: Proceedings of the 10th IEEE annual international workshop on micro electro mechanical systems (MEMS’97), January 26–30, Nagoya, Japan, pp 102–107

  • Wang H, Iovenitti P, Harvey E, Masood S (2002) Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater Struct 11(5):662–667

    Article  Google Scholar 

  • Branebjerg J, Gravesen P, Krog JP (1996) Fast mixing by lamination. In: Proceedings of the 9th IEEE annual international workshop on micro electro mechanical systems (MEMS’96), February 11–15, San Diego, pp 441–446

  • Schwesinger N, Frank T, Wurmus H (1996) A modular microfluid system with an integrated micromixer. J Micromech Microeng 6(1):99–102

    Article  Google Scholar 

  • Gray BL, Jaeggi D, Mourlas NJ, van Drieenhuizen BP, Williams KR, Maluf NI, Kovacs GTA (1999) Novel interconnection technologies for integrated microfluidic systems. Sensor Actuat A—Phys 77(1):57–65

    Article  Google Scholar 

  • Hessel V, Hardt S, Löwe H, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: I. experimental characterization. AIChE J 49(3):566–577

    Article  Google Scholar 

  • Hessel V, Hardt S, Löwe H (2004) Chemical micro process engineering: fundamentals, modelling and reactions. Wiley, New York

    Google Scholar 

  • Hardt S, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: II. numerical simulations. AIChE J 49(3):578–584

    Article  Google Scholar 

  • Munson MS, Yager P (2004) Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Anal Chim Acta 507(1):63–71

    Article  Google Scholar 

  • Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15(2):R1–R16

    Article  Google Scholar 

  • Hardt S, Drese KS, Hessel V, Schönfeld F (2005) Passive micromixers for applications in the microreactor and μtas fields. Microfluidic Nanofluidic

  • Brenner T, Zengerle R, Ducrée J (2003) A flow-switch based on Coriolis force. In: Northrup MA, Jensen KF, Harrison DJ (eds) Proceedings of the 7th international conference on micro total analysis systems (μTAS 2003), October 5–9, Squaw Valley, volume 2 of MESA Monographs, Kluwer, pp 903–906

  • Ducrée J, Schlosser P, Glatzel T, Zengerle R (2004) Centrifugal platform for high-throughput reactive micromixing. In: Laurell T, Nilsson J, Jensen KF, Harrison DJ, Kutter JP (eds) Proceedings of the 8th international conference on micro total analysis systems (μTAS 2004), September 26–30, Malmö, Sweden, volume 1, RSC, pp 554–556

  • Alfredsson PH, Persson H (1989) Instabilities in channel flow with system rotation. J Fluid Mech 202:543–557

    Article  Google Scholar 

  • Barua SN (1954) Secondary flow in a rotating straight pipe. Proc Roy Soc A 227:133–139

    Article  MATH  MathSciNet  Google Scholar 

  • Benton GS (1956) The effect of the earth’s rotation on laminar flow in pipes. J Appl Mech 23:123–127

    MATH  Google Scholar 

  • Brouwers JJH (1995) Secondary flow and particle centrifugation in slightly tilted rotating pipes. Appl Sci Res—Now Flow Turbu Combust 55:95–105

    MATH  Google Scholar 

  • Brouwers JJH (2002) Phase separation in centrifugal fields with emphasis on the rotational separator. Int J Exp Heat Trans Thermodynam Fluid Mech 26:325–334

    Google Scholar 

  • Ducrée J, Haeberle S, Brenner T, Glatzel T, Zengerle R (2005) Patterning of flow and mixing in rotating radial microchannels. Microfluidic Nanofluidic, 2005, status: accepted on 2005-05-05

  • Brenner T, Glatzel T, Zengerle R, Ducrée J (2005) Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5(2):146–150

    Article  PubMed  Google Scholar 

  • ESI Group—CFD–ACE+ (2000) http://www.esi-group.com/SimulationSoftware/CFD_ACE/

  • Grumann M, Brenner T, Beer C, Zengerle R, Ducrée J (2005) Visualization of flow patterning in high-speed centrifugal microfluidics. Rev Sci Instru 76(2):025101

    Article  Google Scholar 

  • Haeberle S, Brenner T, Schlosser H-P, Zengerle R, Ducrée J (2005) Centrifugal micromixer. Chem Eng Technol 28(5):613–616

    Article  Google Scholar 

  • Grumann M, Dobmeier M, Schippers P, Brenner T, Kuhn C, Fritsche M, Zengerle R, Ducrée J (2004) Aggregation of bead-monolayers in flat microfluidic chambers—simulation by the model of porous media. Lab Chip 4(3):209–213

    Article  PubMed  Google Scholar 

  • Grumann M, Riegger L, Nann T, Ehlert O, Mittenbühler K, Urban G, Pastewka L, Brenner T, Zengerle R, Ducrée J (2005) Parallelization of chip-based fluorescence immunoassays with quantum-dot labelled beads. In: Proceedings of the 13th international conference on solid-state sensors, actuators and microsystems (Transducers’05), June 5–9, Seoul, Korea, volume 2, pp 1114–1117

  • Grumann M, Moser I, Kohn C, Urban G, Riegger L, Steigert J, Zengerle R, Ducrée J (2005) Optical beam guidance in monolithic polymer chips for miniaturized colorimetric assays. In: Proceedings of the 18th IEEE international conference on micro electro mechanical systems (MEMS’05), January 30–February 3, Miami, pp 108–111

  • Bio-Disk project (2003) http://www.bio-disk.com, June 2003

  • CoMix—Coriolis Microreactor project (2004) http://www.coriolis-microreactor.com, December 2004

Download references

Acknowledgements

The authors are grateful to the support by the federal state of Baden–Württemberg for the grant “Bio-Disk” (No. 24-720.431-1-7/2) (Bio-Disk 2003) and the support of the CoMix project (CoMix – Coriolis Microreactor 2004) by the Landesstiftung Baden–Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Ducrée.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducrée, J., Brenner, T., Haeberle, S. et al. Multilamination of flows in planar networks of rotating microchannels. Microfluid Nanofluid 2, 78–84 (2006). https://doi.org/10.1007/s10404-005-0056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-005-0056-5

Keywords

Navigation