Skip to main content
Log in

Rainfall-induced shallow landslides: a model for the triggering mechanism of some case studies in Northern Italy

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The article relates the main findings of a recent investigation aimed at modeling the triggering of shallow landslides. A simplified model for assessing the safety factor of potentially unstable slopes, directly related with rainfall trends, was developed. Based on the geometric characteristics of the slope, the geotechnical properties, and strength parameters of the soil, the model makes it possible to define a safety factor of a slope as a function of time. The model is based on the limit equilibrium method and takes into account the seepage of underground water. The safety factor is, in turn, related to the seasonal rainfall. The model was applied on a local scale to some historical cases which had occurred recently in Northern Italy. The paper shows how the results of the application of the model on a local scale achieve a good agreement between the instability condition and the real date of each considered event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AA VV. (2002) Definizione di una metodologia per la valutazione della pericolosità dei versanti in relazione a processi inerenti la coltre superficiale, impiegando parametri idrologici, geotecnici e morfologici e da sperimentarsi in alcuni bacini campione. Azione 3. In: Interreg Italia-Svizzera 1994–99, Direzione Servizi Tecnici di Prevenzione, Torino

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265. doi:10.1016/j.enggeo.2004.01.007

    Article  Google Scholar 

  • ARPA Piemonte (2005) Dalla valutazione alla previsione dei rischi naturali, Torino (in Italian)

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flow. Geogr Ann 62A(1–2):23–27. doi:10.2307/520449

    Article  Google Scholar 

  • Campbell RH (1974) Debris flows originating from soil slips during rainstorms in Southern California. Q J Eng Geol 7:339–349. doi:10.1144/GSL.QJEG.1974.007.04.04

    Article  Google Scholar 

  • Campbell RH (1975) Soil slips, debris flow and rainstorms in the Santa Monica Mountains and Vicinity, Southern California. U.S. Geological Survey Professional Paper 851

  • Cascini L, Cuomo S, Sorbino G (2005) Flow-like mass movements in pyroclastic soils: remarks on the modelling of triggering mechanisms. Ital Geotech J 4:11–31

    Google Scholar 

  • Claessens L, Schrool JM, Veldkamp A (2007) Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for Northern New Zealand. Geomorphology 87:16–27. doi:10.1016/j.geomorph.2006.06.039

    Article  Google Scholar 

  • Corominas J, Remondo R, Farias P, Estevao M, Zezere J, Diaz De Teran J, Dikau R, Schrott L, Moya J, Gonzalez A (1996) Debris flow. In: Dikau R, Brundsen D, Schrott L, Ibsen ML (eds) Landslide, recognition, identification, movement and causes. Wiley, Chichester, pp 161–180

    Google Scholar 

  • Crosta GB (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ Geol 35(2–3):131–145. doi:10.1007/s002540050300

    Article  Google Scholar 

  • Crosta GB, Dal Negro P (2003) Observation and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event. Nat Hazards Earth Syst Sci 3:53–69

    Google Scholar 

  • Crosta GB, Guzzetti F, Marchetti M, Reichembach P (1990) Morphological classification of debris-flow processes in South-Central Alps (Italy). In: Proc. of 6th Int. IAEG Conf., Balkema, Rotterdarm, pp 1565–1572

  • Crosta GB, Dal Negro P, Frattini P (2003) Soil slips and debris flows on terraced slopes. Nat Hazards Earth Syst Sci 3:31–42

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Spec. Rep.-Transp. Res. Board 247:36–75

  • D’Amato Avanzi G, Giannecchini R, Puccinelli A (2003) A contribution to an evaluation of landslide susceptibility in the Apuan Alps (Italy): geologic and geomorphic factors of the 1996 soil slip-debris flows. In: Picarelli L (eds) Proceedings of Int. Conf. on fast slope movements—prediction and prevention for risk mitigation, Naples, pp 125–130

  • D’Amato Avanzi G, Giannecchini R, Puccinelli A (2004) The influence of the geological and geomorphological settings on the shallow landslides. An example in a temperate climate environment: the June 19th, 1996 catastrophe in the north-western Tuscany (Italy). Eng Geol 73:215–228. doi:10.1016/j.enggeo.2004.01.005

    Article  Google Scholar 

  • Ellen SD, Fleming RW (1987) Mobilization of debris flow from soil slips, San Francisco Bay Region, California. In: Costa JE, Wieczorek GF (eds) Debris flow/avalanches: process, recognition, and mitigation. Reviews in Engineering Geology, vol 7. Geological Society of America, Boulder, pp 31–40

    Google Scholar 

  • Ellen SD, Wieczorek GF (1988) Landslides, floods and marine effects of the storm of January 3–5 1982, in the San Francisco bay region, California. U.S. Geological Survey Professional Paper 1434

  • Esposito L, Guadagno FM (1998) Some special geotechnical properties of pumice deposits. Bull Eng Geol Environ 57:41–50. doi:10.1007/s100640050019

    Article  Google Scholar 

  • Frattini P, Crosta GB, Fusi N, Dal Negro P (2004) Shallow landslides in pyroclastic soils: a distributed modelling approach for hazard assessment. Eng Geol 73:277–295. doi:10.1016/j.enggeo.2004.01.009

    Article  Google Scholar 

  • Fredlund DG, Xing A, Fredlund MD, Barbour SL (1996) The relationship of the unsaturated soil shear strength to the soil–water characteristic curve. Can Geotech J 33(3):440–448. doi:10.1139/t96-065

    Article  Google Scholar 

  • Fukuoka M (1980) Landslides associated with rainfall. Geotech Eng 11(1):1–29

    Google Scholar 

  • Giannecchini R, Pochini A (2003) Geotechnical influence on soil slip in the Apuan Alps (Tuscany): first results in the Cardoso Area. In: Picarelli L (eds) Proceedings of Int. Conf. on fast slope movements—prediction and prevention for risk mitigation, Naples, pp 241–245

  • Govi M, Sorzana PF (1980) Landslide susceptibility as a function of critical rainfall amount in Piedmont basin (North-Western Italy). Stud Geomorphol Carpatho-Balc 14:43–61

    Google Scholar 

  • Guallini L (2004) Rilevamento geologico della “finestra tettonica di Ceriana” (alta Valle Armea - Provincia di Imperia): controllo dell’assetto strutturale sui fenomeni di dissesto idrogeologico dell’autunno 2000. Degree Thesis. University of Genoa

  • Guzzetti F, Cardinali M, Reichenbach P, Cipolla F, Sebastiani C, Galli M, Salvati P (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng Geol 73:229–245. doi:10.1016/j.enggeo.2004.01.006

    Article  Google Scholar 

  • Jibson RW (1989) Debris flow in Southern Puerto Rico. Geol Soc Amer Bull 236:29–55

    Google Scholar 

  • Kesseli JE (1943) Disintegrating soil slips of the Coast Ranges of Central California. J Geol 51(5):342–352

    Article  Google Scholar 

  • Ko Ko C, Flentje P, Chowdhury R (2004) Interpretation of probability of landsliding triggered by rainfall. Landslides 1:263–275. doi:10.1007/s10346-004-0031-3

    Article  Google Scholar 

  • Lancellotta R (2004) Geotecnica. Zanichelli, Bologna

    Google Scholar 

  • Luino F (1997) The flood and landslide event of November 4–6, 1994 in Piedmont Region (Northwestern Italy): causes and related effects in Tanaro Valley. Phys Chem Earth A Solid Earth Geod 24(2):123–129. doi:10.1016/S1464-1895(99)00007-1

    Article  Google Scholar 

  • Mantovi P, Fumagalli L, Beretta GP, Guermandi M (2006) Nitrate leaching through the unsaturated zone following pig slurry applications. J Hydrol (Amst) 316:195–212. doi:10.1016/j.jhydrol.2005.04.026

    Article  Google Scholar 

  • Mari M (2000) Un metodo per la valutazione del grado di stabilità di pendii a rischio di scivolamenti superficiali. Degree Thesis, Faculty of Engineering, University of Parma

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control of shallow landsliding. Water Resour Res 30:1153–1171. doi:10.1029/93WR02979

    Article  Google Scholar 

  • Montrasio L (2000) Stability analysis of soil slip. In: Brebbia CA (ed) Proceedings of International Conference Risk 2000. Wit, Soutampthon

    Google Scholar 

  • Montrasio L, Valentino R (2003) Experimental analysis on factors triggering soil slip. In: Picarelli L (eds) Proceedings of Int. Conf. on fast slope movements prediction and prevention for risk mitigation, Patron Ed., Bologna, pp. 371-378

    Google Scholar 

  • Montrasio L, Valentino R (2007) Experimental analysis and modelling of shallow landslides. Landslides 4:291–296. doi:10.1007/s10346-007-0082-3

    Article  Google Scholar 

  • Montrasio L, Valentino R (2008a) A simplified model for the evaluation of the degree of saturation in slope stability analysis of shallow soil. In: Proceedings of 1st European Conf. on Unsaturated Soils, 2–4 July 2008, Durham, United Kingdom

  • Montrasio L, Valentino R (2008b) A model for triggering mechanisms of shallow landslides. Nat Hazards Earth Syst Sci 8:1149–1159

    Google Scholar 

  • Montrasio L, Re F, Valentino R (2002) An approach to measure soil slip risk. In: Brebbia CA (ed) Proceedings of International Conference on Comp. Simulation in risk analysis and hazard mitigation. Wit, Southampton

    Google Scholar 

  • Morton DM, Alvarez RM, Campbell RH (2003) Preliminary soil slip susceptibility maps, southwestern California. California Geological Survey, Open-File Report OF 03-17

  • Moser M, Hohensinn F (1983) Geotechnical aspects of soil slips in Alpine regions. Eng Geol 19:185–211. doi:10.1016/0013-7952(83)90003-0

    Article  Google Scholar 

  • Nocilla A, Coop MR, Colleselli F (2006) The mechanics of an Italian silt: an example of ‘transitional’ behavior. Geotechnique 56(4):261–271. doi:10.1680/geot.2006.56.4.261

    Article  Google Scholar 

  • Olivares L, Damiano E (2007) Postfailure mechanics of landslides: laboratory investigation of flowslides in pyroclastic soils. J Geotech Geoenviron Eng 133(1):51–62. doi:10.1061/(ASCE)1090-0241(2007)133:1(51)

    Article  Google Scholar 

  • Pierson TC (1980) Piezometric response to rainstorms in forested hillslope drainage depressions. J Hydrol NZ 19(1):1–10

    Google Scholar 

  • Polenghi C (2009) Caratterizzazione geotecnica di laboratorio di terreni coinvolti in fenomeni di soil slip. Degree Thesis, Faculty of Engineering, University of Parma.

  • Quintavalla C (2006) Valutazione del grado di saturazione in terreni superficiali per l’analisi di stabilità di pendii in terra. Degree Thesis, Faculty of Engineering, University of Parma

  • Regione Piemonte (1998) Eventi alluvionali in Piemonte 1994–1996. Torino

  • Sassa K (1998) Recent urban landslide disasters in Japan and their mechanisms. In: Proceedings of 2nd International Conference on Environmental Management, 1, pp 47–58

  • Schmidt J, Turek G, Clark MP, Uddstrom M, Dymond JR (2008) Probabilistic forecasting of shallow, rainfall-triggered landslides using real-time numerical weather predictions. Nat Hazards Earth Syst Sci 8:349–357

    Google Scholar 

  • Selby MJ (1976) Slope erosion due to extreme rainfall: a case study from New Zealand. Geogr Ann 58A(2):131–138. doi:10.2307/520925

    Article  Google Scholar 

  • Silva D (2000) Analisi sperimentale del comportamento di terreni stratificati in pendio. Degree Thesis, Faculty of Engineering, University of Parma

  • Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35(2–3):125–130. doi:10.1007/s002540050299

    Google Scholar 

  • Wang G, Sassa K (2001) Factors affecting rainfall-induced flowslides in laboratory flume tests. Geotechnique 51(7):587–599. doi:10.1680/geot.51.7.587.51386

    Article  Google Scholar 

  • Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flow in central Santa Cruz Mountains, California. In: Costa JE, Wieczorek GF (eds) Debris flow/avalanches: process, recognition, and mitigation. Geol Soc Am Rev Eng Geol 7:93–104

  • Wilson RC, Wieczorek GF (1995) Rainfall thresholds for the initiation of debris flow at La Honda, California. Environ Eng Geosci 1(1):11–27

    Google Scholar 

  • Zahn TLT, Ng CWW, Fredlund DG (2007) Field study of rainfall infiltration into a grassed unsaturated expansive soil slope. Can Geotech J 44:392–408. doi:10.1139/T07-001

    Article  Google Scholar 

  • Zezere JL, Trigo RM, Fragoso M, Oliveira SC, Garcia RAC (2008) Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with North Atlantic Oscillation. Nat Hazards Earth Syst Sci 8:483–499

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support from ARPA-SIM (Regional Agency for Environmental Protection and Hydro-Meteorological Service) of Emilia Romagna Region to perform this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Valentino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montrasio, L., Valentino, R. & Losi, G.L. Rainfall-induced shallow landslides: a model for the triggering mechanism of some case studies in Northern Italy. Landslides 6, 241–251 (2009). https://doi.org/10.1007/s10346-009-0154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-009-0154-7

Keywords

Navigation