Skip to main content
Log in

An inexact Newton method for nonconvex equality constrained optimization

  • FULL LENGTH PAPER
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We present a matrix-free line search algorithm for large-scale equality constrained optimization that allows for inexact step computations. For strictly convex problems, the method reduces to the inexact sequential quadratic programming approach proposed by Byrd et al. [SIAM J. Optim. 19(1) 351–369, 2008]. For nonconvex problems, the methodology developed in this paper allows for the presence of negative curvature without requiring information about the inertia of the primal–dual iteration matrix. Negative curvature may arise from second-order information of the problem functions, but in fact exact second derivatives are not required in the approach. The complete algorithm is characterized by its emphasis on sufficient reductions in a model of an exact penalty function. We analyze the global behavior of the algorithm and present numerical results on a collection of test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bongartz I., Conn A.R., Gould N.I.M., Toint Ph.L.: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21(1), 123–160 (1995)

    Article  MATH  Google Scholar 

  2. Byrd R.H., Curtis F.E., Nocedal J.: An inexact SQP method for equality constrained optimization. SIAM J. Optim. 19(1), 351–369 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Conn A.R., Gould N.I.M., Toint Ph.: Trust-Region Methods. MPS-SIAM Series on Optimization. SIAM Publications, Philadelphia (2000)

    Google Scholar 

  4. Curtis, F.E., Haber, E.: Numerical experience with an inexact SQP method for PDE-constrained optimization. (In preparation)

  5. Dennis J.E., Vicente L.N.: On the convergence theory of trust-region based algorithms for equality-constrained optimization. SIAM J. Optim. 7(4), 927–950 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Di-Pillo J., Lucidi S., Palagi L.: Convergence to second-order stationary points of a primal–dual algorithm model for nonlinear programming. Math. Oper. Res. 30(4), 879–915 (2005)

    Article  MathSciNet  Google Scholar 

  7. Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. A 91, 201–213 (2002)

    Article  MATH  Google Scholar 

  8. El-Alem M.: Convergence to a 2nd order point of a trust-region algorithm with nonmonotonic penalty parameter for constrained optimization. J. Optim. Theory Appl. 91(1), 61–79 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Facchinei F., Lucidi S.: Convergence to second order stationary points in inequality constrained optimization. Math. Oper. Res. 23, 746–766 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Freund, R.W., Nachtigal, N.M.: A new Krylov-subspace method for symmetric indefinite linear systems. In: Ames, W.F. (ed.) Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, pp. 1253–1256. IMACS (1994)

  11. Gould N.I.M., Orban D., Toint Ph.L.: CUTEr and sifdec: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gould N.I.M., Toint Ph.L.: A note on the second-order convergence of optimization algorithms using barrier functions. Math. Program. 85(2), 433–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Heinkenschloss, M., Ridzal, D.: An inexact trust-region SQP method with applications to PDE-constrained optimization. In: Steinbach, O., Of, G. (eds.) Numerical Mathematics and Advance Applications: Proceedings of Enumath 2007, the 7th European Conference on Numerical Mathematics and Advanced Applications, Graz, Austria, September 2007, Springer, Heidelberg (2008, submitted). doi:10.1007/978-3-540-69777-0_73

  14. Heinkenschloss M., Vicente L.N.: Analysis of inexact trust-region SQP algorithms. SIAM J. Optim. 12, 283–302 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kelley, C.T.: Iterative methods for linear and nonlinear equations: Matlab codes (1994). http://www4.ncsu.edu/~ctk/matlab_roots.html

  16. Moguerza J.M., Prieto F.J.: An augmented Lagrangian interior point method using directions of negative curvature. Math. Program. 95(3), 573–616 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Paige C.C., Saunders M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Paige, C.C., Saunders, M.A.: MINRES: sparse symmetric equations (2003). http://www.stanford.edu/group/SOL/software/minres.html

  19. Ridzal, D.: Trust region SQP methods with inexact linear system solves for large-scale optimization. Ph.D. thesis, Rice University (2006)

  20. Saad Y., Schultz M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ulbrich S.: Generalized SQP-methods with “parareal” time-domain decomposition for time-dependent PDE-constrained optimization. In: Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., Bloemen Waanders, B. (eds) Real-Time PDE-Constrained Optimization, pp. 145–168. SIAM, Philadelphia (2008)

    Google Scholar 

  22. Vanderbei R.J., Shanno D.F.: An interior point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Curtis.

Additional information

Richard H. Byrd was supported by National Science Foundation grants CCR-0219190 and CHE-0205170.

Frank E. Curtis was supported by Department of Energy grant DE-FG02-87ER25047-A004.

Jorge Nocedal was supported by National Science Foundation grant CCF-0514772 and by a grant from the Intel Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrd, R.H., Curtis, F.E. & Nocedal, J. An inexact Newton method for nonconvex equality constrained optimization. Math. Program. 122, 273–299 (2010). https://doi.org/10.1007/s10107-008-0248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0248-3

Keywords

Mathematics Subject Classification (2000)

Navigation