Skip to main content
Log in

Readmission due to driveline infection can be predicted by new score by using serum albumin and body mass index during long-term left ventricular assist device support

  • Original Article
  • Artificial Heart (Clinical)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Survival in patients with continuous flow left ventricular assist device (CF LVAD) had been increased owing to improved perioperative management procedures. The second target for successful long-term LVAD treatment was to reduce readmission especially due to device-specific infection, which was one of the major unsolved complications. Among 57 enrolled patients who had received CF LVAD and been followed for 530 days on median at our institute between 2008 and 2014, 21 patients experienced readmission due to driveline infection (DLI) at 190 days after the surgery on median. Considering the result of Uni/Multivariate Cox regression analyses demonstrating lower serum albumin concentration (S-ALB) (hazard ratio 0.144) and body mass index (BMI) (hazard ratio 0.843) both obtained at discharge were independent predictors of readmission due to DLI, we constructed a New Score “7 × [S-ALB (g/dL)] + [BMI]”, which significantly stratified readmission-free rate into 3 groups [low (>50 Pt), intermediate (44–50 Pt), and high risk group (<44 Pt)] during 2-year study period (p = 0.008). Survival remained unchanged irrespective of DLI, whereas those with DLI needed longer in-hospital treatment (p < 0.05). In conclusion, readmission due to DLI could be predicted by using two simple nutrition parameters at discharge. Early nutrition assessment and intervention may reduce readmission and improve patients’ quality of life during long-term LVAD support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frazier OH, Rose EA, Oz MC, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2001;122:1186–95.

    CAS  PubMed  Google Scholar 

  2. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    CAS  PubMed  Google Scholar 

  3. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    CAS  PubMed  Google Scholar 

  4. Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312–21.

    PubMed  Google Scholar 

  5. Imamura T, Kinugawa K, Shiga T, et al. Novel risk scoring system with preoperative objective parameters gives a good prediction of 1-year mortality in patients with a left ventricular assist device. Circ J. 2012;76:1895–903.

    PubMed  Google Scholar 

  6. Hannan MM, Husain S, Mattner F, et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant. 2011;30:375–84.

    PubMed  Google Scholar 

  7. Zierer A, Melby SJ, Voeller RK, et al. Late-onset driveline infections: the Achilles’ heel of prolonged left ventricular assist device support. Ann Thorac Surg. 2007;84:515–20.

    PubMed  Google Scholar 

  8. Holman WL, Naftel DC, Eckert CE, Kormos RL, Goldstein DJ, Kirklin JK. Durability of left ventricular assist devices: interagency registry for mechanically assisted circulatory support (INTERMACS) 2006–2011. J Thorac Cardiovasc Surg. 2013;146:437–41 e1.

    PubMed  Google Scholar 

  9. Oz MC, Gelijns AC, Miller L, et al. Left ventricular assist devices as permanent heart failure therapy: the price of progress. Ann Surg. 2003;238:577–83 (discussion 83-5).

    PubMed Central  PubMed  Google Scholar 

  10. Monkowski DH, Axelrod P, Fekete T, Hollander T, Furukawa S, Samuel R. Infections associated with ventricular assist devices: epidemiology and effect on prognosis after transplantation. Transpl Infect Dis. 2007;9:114–20.

    CAS  PubMed  Google Scholar 

  11. Toda K, Yonemoto Y, Fujita T, et al. Risk analysis of bloodstream infection during long-term left ventricular assist device support. Ann Thorac Surg. 2012;94:1387–93.

    PubMed  Google Scholar 

  12. Sharma V, Deo SV, Stulak JM, et al. Driveline infections in left ventricular assist devices: implications for destination therapy. Ann Thorac Surg. 2012;94:1381–6.

    PubMed  Google Scholar 

  13. De Luis DA, Culebras JM, Aller R, Eiros-Bouza JM. Surgical infection and malnutrition. Nutr Hosp. 2014;30:509–13.

    PubMed  Google Scholar 

  14. Goldstein DJ, Naftel D, Holman W, et al. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant. 2012;31:1151–7.

    PubMed  Google Scholar 

  15. Raymond AL, Kfoury AG, Bishop CJ, et al. Obesity and left ventricular assist device driveline exit site infection. ASAIO J. 2010;56:57–60.

    PubMed  Google Scholar 

  16. Bomholt T, Moser C, Sander K, et al. Driveline infections in patients supported with a HeartMate II: incidence, aetiology and outcome. Scand Cardiovasc J. 2011;45:273–8.

    PubMed  Google Scholar 

  17. Vega JD, Poindexter SM, Radovancevic B, et al. Nutritional assessment of patients with extended left ventricular assist device support. ASAIO Trans. 1990;36:M555–8.

    CAS  PubMed  Google Scholar 

  18. Leeper B. Impact of obesity on care of postoperative coronary bypass patients. Crit Care Nurs Clin North Am. 2009;21:369–75 vi.

    PubMed  Google Scholar 

  19. Martin SI, Wellington L, Stevenson KB, et al. Effect of body mass index and device type on infection in left ventricular assist device support beyond 30 days. Interact CardioVasc Thorac Surg. 2010;11:20–3.

    PubMed  Google Scholar 

  20. Butler J, Howser R, Portner PM, Pierson RN 3rd. Body mass index and outcomes after left ventricular assist device placement. Ann Thorac Surg. 2005;79:66–73.

    PubMed  Google Scholar 

  21. Coyle LA, Ising MS, Gallagher C, et al. Destination therapy: one-year outcomes in patients with a body mass index greater than 30. Artif Organs. 2010;34:93–7.

    PubMed  Google Scholar 

  22. Arques S, Ambrosi P. Human serum albumin in the clinical syndrome of heart failure. J Card Fail. 2011;17:451–8.

    CAS  PubMed  Google Scholar 

  23. Anker SD, Coats AJ. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest. 1999;115:836–47.

    CAS  PubMed  Google Scholar 

  24. Berry C, Clark AL. Catabolism in chronic heart failure. Eur Heart J. 2000;21:521–32.

    CAS  PubMed  Google Scholar 

  25. Mano A, Fujita K, Uenomachi K, et al. Body mass index is a useful predictor of prognosis after left ventricular assist system implantation. J Heart Lung Transplant. 2009;28:428–33.

    PubMed  Google Scholar 

  26. Kato TS, Kitada S, Yang J, et al. Relation of preoperative serum albumin levels to survival in patients undergoing left ventricular assist device implantation. Am J Cardiol. 2013;112:1484–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Siegenthaler MP, Martin J, Pernice K, et al. The Jarvik 2000 is associated with less infections than the HeartMate left ventricular assist device. Eur J Cardiothorac Surg. 2003;23:748–54 (discussion 54–5).

    CAS  PubMed  Google Scholar 

  28. Topkara VK, Kondareddy S, Malik F, et al. Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg. 2010;90:1270–7.

    PubMed  Google Scholar 

  29. Hieda M, Sata M, Seguchi O, et al. Importance of early appropriate intervention including antibiotics and wound care for device-related infection in patients with left ventricular assist device. Transplant Proc. 2014;46:907–10.

    CAS  PubMed  Google Scholar 

  30. Nienaber JJ, Kusne S, Riaz T, et al. Clinical manifestations and management of left ventricular assist device-associated infections. Clin Infect Dis. 2013;57:1438–48.

    PubMed Central  PubMed  Google Scholar 

  31. Holdy K, Dembitsky W, Eaton LL, et al. Nutrition assessment and management of left ventricular assist device patients. J Heart Lung Transplant. 2005;24:1690–6.

    PubMed  Google Scholar 

  32. Abicht T, Gordon R, Meehan K, Stosor V, McCarthy P, McGee E Jr. Complex HeartMate II infection treated with pump exchange to HeartWare HVAD. ASAIO J. 2013;59:188–92.

    PubMed  Google Scholar 

  33. Buzby GP, Mullen JL, Matthews DC, Hobbs CL, Rosato EF. Prognostic nutritional index in gastrointestinal surgery. Am J Surg. 1980;139:160–7.

    CAS  PubMed  Google Scholar 

  34. Aggarwal A, Kumar A, Gregory MP, et al. Nutrition assessment in advanced heart failure patients evaluated for ventricular assist devices or cardiac transplantation. Nutr Clin Pract. 2013;28:112–9.

    PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Kinugawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamura, T., Kinugawa, K., Nitta, D. et al. Readmission due to driveline infection can be predicted by new score by using serum albumin and body mass index during long-term left ventricular assist device support. J Artif Organs 18, 120–127 (2015). https://doi.org/10.1007/s10047-015-0816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-015-0816-2

Keywords

Navigation