Skip to main content

Advertisement

Log in

Effect of metal surface characteristics on the adhesion performance of the integrated low-level energies method of adhesion

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

We have previously proposed a new method of adhesion using the integrated low-level energy sources heat, vibration, and pressure. This adhesion method can be used to attach biological tissue to a metal object. Effects of surface roughness and energy of the metal subject on adhesion performance were studied by using commercially pure titanium (cpTi) and stainless steel (SUS304). Surface roughness and energy were changed by sandblast treatment and heat treatment, respectively. A porcine aorta was adhered to sandblast-treated SUS304 by use of an adhesion temperature of 80 °C, a vibration amplitude of 15 μm, a pressure of 2.5 MPa, an adhesion time of 120 s, and a surface roughness of an Ra 0.25 μm. The shear tensile strength of the adhesion was 0.45 MPa. The adhesion performance was improved by roughening the surface of the metal specimen. Surface energy has an insignificant effect on adhesive strength. The adhesion performance varied depending on metal material for the same surface roughness, Ra, and energy. Results from analysis of the surface roughness profile suggested that the size of surface asperity has an effect on adhesion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nakayama Y, Zhou Y, Ishibasi-Ueda H. Development of in vivo tissue-engineered autologous tissue-covered stents (biocovered stents). J Artif Organs. 2007;10:171–6.

    Article  PubMed  Google Scholar 

  2. Usui A, Ueda Y, Watanabe T, Kawaguchi O, Ohara Y, Takagi Y, Tajima K, Nisikimi N, Ishiguchi T. Comparative clinical study between endovascular stent grafting on open surgery and conventional graft replacement for distal arch aneurysm. J Artif Organs. 2001;4:283–7.

    Article  Google Scholar 

  3. Aiba M, Hashimoto T, Tanaka H, Okada Y, Yamada M, Kawada T. Stent graft treatment for thoracic and thoracoabdominal aortic disease using a unibody Z-stent that adapts to flexure. J Artif Organs. 2007;10:165–70.

    Article  PubMed  Google Scholar 

  4. Masuzawa T, Ohta A, Tanaka N, Qian Y, Tsukiya T. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis. J Artif Organs. 2009;12:150–9.

    Article  PubMed  Google Scholar 

  5. Abe Y, Isoyama T, Saito I, Mochizuki S, Ono M, Nakagawa H, Taniguchi N, Mitsumune N, Sugino A, Mitsui M, Takiura K, Ono T, Kouno A, Chinzei T, Takamoto S, Imachi K. Development of mechanical circulatory support devices at the University of Tokyo. J Artif Organs. 2007;10:60–70.

    Article  PubMed  Google Scholar 

  6. Omoto R, Kyo S, Nisumura M, Matsuda H, Matsumiya G, Kitamura S, Nakatani T, Takamoto S, Ono M, Tabayashi K, Yozu R. Japanese multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system. J Artif Organs. 2005;8:34–40.

    Article  PubMed  Google Scholar 

  7. Kurihara C, Ono M, Nishimura T, Saito A, Taketani T, Hisagi M, Nawata K, Kinoshita O, Morota T, Motomura N, Kyo S. Use of DuraHeart® support for more than 1 year as the first successful bridge to heart transplantation in Japan. J Artif Organs. 2011;14:67–9.

    Article  PubMed  Google Scholar 

  8. Yamazaki K, Kihara S, Akimoto T, Tagusari O, Kawai A, Umezu M, Tomioka J, Kormos RL, Griffith BP, Kurosawa H. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support. Jpn J Thorac Cardiovasc Surg. 2002;50:461–5.

    Article  PubMed  Google Scholar 

  9. Mark E, Glenda ML. Ultrasonically activated technology in gynaecologic operative laparoscopy. Rev Gynaecol Pract. 2004;4:194–8.

    Article  Google Scholar 

  10. Kinoshita T, Kanehira E, Omura K, Kawakami K, Watanabe Y. Experimental study on heat production by a 23.5-kHz ultrasonically activated device for endoscopic surgery. Surg Endosc. 1999;13:621–5.

    Article  PubMed  CAS  Google Scholar 

  11. Tanaka T, Ueda K, Hayashi M, Hamano K. Clinical application of an ultrasonic scalpel to divide pulmonary vessels based on laboratory evidence. Interact Cardiovasc Thorac Surg. 2009;8:615–8.

    Article  PubMed  Google Scholar 

  12. Foschi D, Cellerino P, Corsi F, Taidelli T, Morandi E, Rizzi A, Trabucchi E. The mechanisms of blood vessel closure in human by the application of ultrasonic energy. Surg Endosc. 2002;16:814–9.

    Article  PubMed  CAS  Google Scholar 

  13. Katoh A, Masuzawa T, Ozeki K, Kishida A, Kimura T, Higami T. Development of tissue adhesion method using integrated low-level energies. Med Eng Phys. 2010;32:304–11.

    Article  PubMed  Google Scholar 

  14. Yamada Y, Nishinaka T, Mizuno T, Taenaka Y, Tatsumi E, Yamazaki K. Neointima-inducing inflow cannula with titanium mesh for left ventricular assist device. J Artif Organs. 2011;14:269–75.

    Article  PubMed  CAS  Google Scholar 

  15. Martin C, Manfred C, Doris H, Tatjana F, Thomas H, Maria S, Johannes L, Daniel Z, Marek E, Ernst W. Stent-graft placement in atherosclerotic descending theoretic aortic aneurysms: midterm results. J Endovasc Ther. 2004;11:26–32.

    Article  Google Scholar 

  16. Geoffrey HW, James M, Paul P, Richard W, Michael S, Iohn H. Endotension: an explanation for continued AAA growth after successful endoluminal repair. J Endovasc Ther. 1996;6:308–15.

    Google Scholar 

  17. Lutz LB, Ulrich K, Harry E, Reinhard B. Biliary pneumonitis after proximal stent migration. Gastrointest Endosc. 2001;54:382–4.

    Article  Google Scholar 

  18. Chris TB, Rudolf P, Kurt T, Markus S, Andre PP. Silicone stents in the management of inoperable tracheobronchial stenoses: indications and limitations. Chest. 1993;104:1653–9.

    Article  Google Scholar 

  19. Todd HB, Richard AK. Endoscopic stenting of colonic tumours. Best Pract Res Clin Gastroenterol. 2004;18:209–29.

    Article  Google Scholar 

  20. Nadja S, David J, Robert S, Chadrick AG, George PN, Michael MK, Matthias L. Rupture of inlet graft of the HeartMate system: a case report. J Heart Lung Transplant. 2006;25:137–9.

    Article  Google Scholar 

  21. Kaneko S, Ueha S, Mori E. Ultrasonic welding of plastics; An acoustical consideration on welding point supporting method of specimen. J Acoust Soc Jpn. 1986;42:5:365–71 (in Japanese).

    Google Scholar 

  22. [22] Fu Si, Ide M. A study on frictional heat of welding surface and due to internal loss in ultrasonic plastic welding. J Acoust Soc Jpn. 1996; 52:4:276-80 (in Japanese).

    Google Scholar 

  23. Taguchi T, Saito H, Aoki H, Uchida Y, Sakane M, Kobayashi H, Tanaka J. Biocompatible high-strength glue consisting of citric acid derivative and collagen. Mater Sci Eng C. 2006;26:9–13.

    Article  CAS  Google Scholar 

  24. Silver FH, Christiansen DL, Buntin CM. Mechanical properties of the aorta: a review. Crit Rev Biomed Eng. 1989;17:323–58.

    PubMed  CAS  Google Scholar 

  25. Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:3074–82.

    Article  PubMed  CAS  Google Scholar 

  26. Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;7:55–71.

    Article  PubMed  CAS  Google Scholar 

  27. Tamada Y, Ikeda Y. Cell adhesion to plasma-treated polymer surfaces. Polymer. 1993;34:2208–12.

    Article  CAS  Google Scholar 

  28. Lee JH, Khang G, Lee JW, Lee HB. Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interface Sci. 1998;205:323–30.

    Article  PubMed  CAS  Google Scholar 

  29. Lee JH, Lee JW, Khang G, Lee HB. Interaction of cells on chargeable functional group gradient surfaces. Biomaterials. 1997;18:351–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

A part of this research was supported by MEXT/JSPS KAKENHI Grant-in-Aid for Scientific Research (B) Grant Number 22390242.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toru Masuzawa or Akio Kishida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aodai, T., Masuzawa, T., Ozeki, K. et al. Effect of metal surface characteristics on the adhesion performance of the integrated low-level energies method of adhesion. J Artif Organs 15, 386–394 (2012). https://doi.org/10.1007/s10047-012-0656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-012-0656-2

Keywords

Navigation