Skip to main content
Log in

Competitive formation of b2 and c2-H2O ions from b3 ions containing Asp residue during tandem mass spectrometry: the influence of neighboring Arg

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The fragmentation of b3 ions derived from protonated Arg-Xxx-Asp-Ala-Ala (Xxx = Ala, Asp, Glu, Cys) and Arg-Xxx-Glu-Ala-Ala was investigated by electrospray ionization tandem mass spectrometry (MSn) with collision-induced dissociation. A particular ion, which is 1 Da less than b2 ion, is shown to be the c2-H2O ion. The mechanism for its formation involved the aspartic acid in the third position easily losing anhydride to form a c2 ion, which then lost water to form an eight-membered ring of azacyclooctane derivative under the participation of the guanidine of the N-terminal arginine. However, this phenomenon was not observed when the aspartic acid was replaced by glutamic acid. The Amber program was used to determine the conformation of the original c2 residue from the dynamic energy perspective, and then density functional theory-based calculations and changing N-terminal amino acid from arginine to phenylalanine supported this mechanism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  • Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    Article  CAS  PubMed  Google Scholar 

  • Azevedo RA (2002) Analysis of the aspartic acid metabolic pathway using mutant genes. Amino Acids 22:217–230

    Article  CAS  PubMed  Google Scholar 

  • Balta B, Aviyente V, Lifshitz C (2003) Elimination of water from carboxyl group of GlyGlyH+. J Am Soc Mass Spectrom 14:1192–1203

    Article  CAS  PubMed  Google Scholar 

  • Benjamin JB, Suhai S, Paizs B (2009) Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. J Am Chem Soc 131:14057–14065

    Article  Google Scholar 

  • Bythell BJ, Csonka IP, Paizs B (2010) Gas-phase structure and fragmentation pathways of singly protonated peptides with N-terminal arginine. J Phys Chem B 114:15092–15105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chai YF, Gan SF (2012) A mechanistic study of formation of radical anion from fragmentation of deprotonated N,2-diphenylacetamide derivatives in electrospray ionization tandem mass spectrometry. Acta Chim Sinica 70:1805–1811

    Article  CAS  Google Scholar 

  • Chai YF, Guo C, Jiang KZ (2012) C-alpha, C-beta and C-alpha N bond cleavage in the dissociation of protonated N-benzyllactams: dissociative proton transfer and intramolecular proton-transport catalysis. Org Biomol Chem 10:791–797

    Article  CAS  PubMed  Google Scholar 

  • D’Aneillo S, Garcia-Fernandez J (2007) d-Aspartic acid and l-amino acids in the neural system of the amphioxus Branchiostoma lanceolatum. Amino Acids 32:21–26

    Article  Google Scholar 

  • Donger AR, Jones JL, Wysocki VH (1996) Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model. J Am Chem Soc 397:8365–8374

    Article  Google Scholar 

  • Fisher G, Lopez S, Pheterson K, Goff T, Philip I, Gaviria R, Lorenzo N, Tsesarskaia M (2007) Is there a correlation between age and d-aspartic acid in human knee cartilage. Amino Acids 32:27–30

    Article  CAS  PubMed  Google Scholar 

  • Giuseppina B et al (2013) A practical route to long-chain non-natural α, ω-diamino acids. Amino Acids 44:435–441

    Article  Google Scholar 

  • Gu CG, Somogyi A, Wysocki VH (1999) Fragmentation of protonated oligopeptides XLDVLQ(X=L, H, K or R) by surface induced dissociation: addition evidence for the “mobile proton” model. Anal Chim Acta 397:247–256

    Article  CAS  Google Scholar 

  • Gu CG, Tsaprailis G, Breci L, Wysocki VH (2000) Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of asp-containing peptides. Anal Chem 72:5804–5813

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Wan JP, Hu N (2010) An experimental and computational investigation on the fragmentation behavior of enaminones in electrospray ionization mass spectrometry. J Mass Spectrom 45:1291–1298

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Jiang KZ, Yue L (2012) Intriguing roles of reactive intermediates in dissociation chemistry of N-phenylcinnamides. Org Biomol Chem 10:7070–7077

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Yue L, Guo MZ (2013) Elimination of benzene from protonated Nbenzylindoline: benzyl cation/proton transfer of direct proton transfer. J Am Soc Mass Spectrom 24:381–387

    Article  CAS  PubMed  Google Scholar 

  • Harrison AG (1999) Linear free energy correlations in mass spectrometry. J Mass Spectrom 34:577–589

    Article  CAS  Google Scholar 

  • Harrison AG (2003) Fragmentation reactions of protonated peptides containing glutamine or glutamic acid. J Mass Spectrom 38:174–187

    Article  CAS  PubMed  Google Scholar 

  • Harrison AG (2009) To b or not to b: the ongoing saga of peptide b ions. Mass Spectrom Rev 28:640–65438

    Article  CAS  PubMed  Google Scholar 

  • Harrison AG (2012) Pathways for water loss from doubly protonated peptides containing serine or threonine. J Am Soc Mass Spectrom 23:116–123

    Article  CAS  PubMed  Google Scholar 

  • Harrison AG, Csizmadia IG, Tang TH (2000) Structure and fragmentation of b2 ions in peptide mass spectra. J Am Soc Mass Spectrom 11:427–436

    Article  CAS  PubMed  Google Scholar 

  • Herrmann KA, Wysocki VH, Vorpagel ER (2005) Computational investigation and hydrogen/deuterium exchange of the fixed charge derivative tris(2,4,6-trimethoxyphenyl) phosphonium: implications for the aspartic acid cleavage mechanism. J Am Soc Mass Spectrom 16:1067–1080

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Wysocki VH, Tabb DL, Yates JR (2002) The influence of histidine on cleavage C-terminal to acidic residues in doubly protonated tryptic peptides. Int J Mass Spectrom 219:233–244

    Article  CAS  Google Scholar 

  • Jayaraman D, Atanu M, Khatija T, Chebrolu PR (2012) Benzimidazole conjugate of 1,1′-thiobis(2-naphthol) as switch-on fluorescence receptor for Ag+ and the complex as secondary recognition ensemble toward Cys, Asp, and Glu in aqueous methanolic solution: synthesis, characterization, ion and amino acid recognition, computational studies, and microscopy features. J Org Chem 77:371–378

    Article  Google Scholar 

  • Kyathanahalli C, Muralidhara (2010) d-Aspartic acid induced oxidative stress and mitochondrial dysfunctions in testis of prepubertal rats. Amino Acids. 38:817–827

  • Larsen MR, Roepstorff P (2000) Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis. J Anal Chem 366:667–690

    Google Scholar 

  • McCormack AL, Somogyi A, Dongre AR, Wysocki VH (1993) Fragmentation of protonated peptides: surface-induced dissociation in conjunction with a quantum-mechanical approach. Anal Chem 65:2859–2872

    Article  CAS  PubMed  Google Scholar 

  • Molesworth SP, Van Stipdonk MJ (2010) Apparent inhibition by arginine of macrocyclic b ion formation from singly charged protonated peptides. J Am Soc Mass Spectrom 21:1322–1328

    Article  CAS  PubMed  Google Scholar 

  • Morrison L, Somogyi A, Wysocki VH (2012) The influence glutamic acid in protonated b3–b2 formation form VGRIG and related analogs. Int J Mass Spectrom 325–327:139–149

    PubMed Central  PubMed  Google Scholar 

  • Paizs B, Suhai S (1998) Comparative study of BSSR correction methods at DFT and MP2 levels of theory. J Comput Chem 19:575–584

    Article  CAS  Google Scholar 

  • Paizs B, Suhai S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24:508–548

    Article  CAS  PubMed  Google Scholar 

  • Paizs B, Suhai S, Hargittai B (2002) Ab initio and MS/MS studies on protonated peptides containing basic and acidic amino acid residues: I. Solvated proton versus salt-bridged structures and the cleavage of the terminal amide bond of protonated RD-NH2. Int J Mass Spectrom 219:203–232

    Article  CAS  Google Scholar 

  • Pingitor F, Polce MJ, Wang P, Paizs B (2004) Intramolecular condensation reactions in protonated dipeptides: carbon monoxide, water, and ammonia losses in competition. J Am Soc Mass Spectrom 15:1025–1038

    Article  Google Scholar 

  • Polce MJ, Ren D, Wesdemiotis C (2000) Special feature: commentary-dissociation of the peptide bond in protonated peptides. J Mass Spectrom 35:1391–1398

    Article  CAS  PubMed  Google Scholar 

  • Price WD, Schnier PD, Jockush RA, Williams ER (1996) Unimolecular reaction kinetics in the high-pressure limit without collisions. J Am Chem Soc 118:10640–10644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rozman M (2007) Aspartic acid side chain effect-experimental and theoretical insight. J Am Soc Mass Spectrom 18:121–127

    Article  CAS  PubMed  Google Scholar 

  • Sang WL, Hyun SK, Beauchamp JL (1998) Salt bridge chemistry applied to gas-phase peptide sequencing: selective fragmentation of sodiated gas-phase peptide ions adjacent to aspartic acid residues. J Am Chem Soc 120:3188–3195

    Article  Google Scholar 

  • Somogyi A, Harrison AG, Paizs B (2012) Using gas-phase guest-host chemistry to probe the structures of b ions of peptides. J Am Soc Mass Spectrom 23:2055–2058

    Article  CAS  PubMed  Google Scholar 

  • Tsaprailis G, Nair H, Somogyi A, Wysocki VH (1999) Influence of secondary structure on the fragmentation of protonated peptides. J Am Chem Soc 121:5142–5154

    Article  CAS  Google Scholar 

  • Wang B, Shang JZ, Qin YJ, Guo XH (2011) Differentiation of a- or b-aspartic acid isomers in the heptapetides by the fragments of [M+Na]+ using ion trap tandem mass spectrometry. J Am Soc Mass Spectrom 22:1453–1462

    Article  PubMed  Google Scholar 

  • Wysocki VH, Tsaprailis G, Smith LL (2000) Mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom 35:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Yalcin T, Khouw C, Csizmadia IG (1995) Why are b ions stable species in peptide spectra? J Am Soc Mass Spectrom 6:1165–1174

    Article  CAS  PubMed  Google Scholar 

  • You ZS, Wen YJ, Jiang KZ (2012) Fragmentation mechanism of product ions from protonated proline-containing tripeptides in electrospray ionization mass spectrometry. Chin Sci Bull 57:2051–2061

    Article  CAS  Google Scholar 

  • Yu W, Vath JE, Huberty MC, Martin SA (1993) Identification of the facile gas-phase cleavage of the asp-pro and asp-xxx peptide-bonds in matrix assisted laser desorption time-of-flight mass-spectrometry. Anal Chem 65:3015–3023

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chai YF (2012) Gas-phase smiles rearrangement of sulfonylurea herbicides in electrospray ionization mass spectrometry. Chin J Chem 30:2383–2388

    Article  CAS  Google Scholar 

  • Zhou Guisheng et al (2013) Hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry for highly rapid and sensitive analysis of underivatized amino acids in functional foods. Amino Acids 44:1293–1305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Professor Dr. Jianzhong Chen from College of Pharmaceutical Sciences, Zhejiang University, for his help of molecular dynamics simulation. We also gratefully acknowledge the financial support from the NSF of China (No. 21025207).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjiang Pan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Guo, C. & Pan, Y. Competitive formation of b2 and c2-H2O ions from b3 ions containing Asp residue during tandem mass spectrometry: the influence of neighboring Arg. Amino Acids 46, 1939–1946 (2014). https://doi.org/10.1007/s00726-014-1743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1743-x

Keywords

Navigation