Skip to main content
Log in

An Improved Calibration Framework for Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT)

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The image quality of iterative self-consistent parallel imaging reconstruction (SPIRiT) algorithm highly depends on the accuracy of linear coefficients which can be easily influenced by k-space noise. In this study, an improved calibration framework for SPIRiT is presented to reduce noise-induced errors and to adaptively generate optimal linear weighting coefficients. Specifically, the auto-calibration signals (ACS) are first mapped to a high-dimensional feature space through a polynomial mapping, and the optimal coefficients are adaptively obtained in this new feature space with discrepancy-based Tikhonov regularization and then truncated for SPIRiT reconstruction. Phantom and in vivo brain reconstruction were, respectively, performed and this calibration framework was mainly evaluated in Cartesian k-space-based SPIRiT reconstruction. In both phantom and in vivo reconstructions, noise-induced errors can be reduced by polynomial mapping and optimal regularization parameter, which improves the accuracy of linear coefficients. Both qualitative and quantitative results demonstrated that the proposed calibration framework resulted in better image quality without loss of resolution compared with the conventional calibration at different acceleration factors. The proposed calibration framework can effectively improve SPIRiT image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.K. Sodickson, W.J. Manning, Magn. Reson. Med. 38, 591–603 (1997)

    Article  Google Scholar 

  2. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42, 952–962 (1999)

    Article  Google Scholar 

  3. K. Pruessmann, M. Weiger, P. Bornert, P. Boesiger, Magn. Reson. Med. 46, 638–651 (2001)

    Article  Google Scholar 

  4. L. Chen, Y. Chang, L. Wang, X. Yang, Comput. Meas. Control. 23, 4177–4179 (2015)

    Google Scholar 

  5. A.A. Samsonov, E.G. Kholmovski, D.L. Parker, C.R. Johnson, Magn. Reson. Med. 52, 1397–1406 (2004)

    Article  Google Scholar 

  6. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Magn. Reson. Med. 47, 1202–1210 (2002)

    Article  Google Scholar 

  7. Z. Wang, J. Wang, J.A. Detre, Magn. Reson. Med. 54, 738–742 (2005)

    Article  Google Scholar 

  8. R. Nana, X. Hu, Magn. Reson. Imaging 28, 119–128 (2010)

    Article  Google Scholar 

  9. F.H. Lin, K.K. Kwong, J.W. Belliveau, L.L. Wald, Magn. Reson. Med. 51, 559–567 (2004)

    Article  Google Scholar 

  10. W. Liu, X. Tang, Y. Ma, J. Gao, Magn. Reson. Med. 69, 1109–1114 (2013)

    Article  Google Scholar 

  11. H. Wang, D. Liang, K.F. King, G. Nagarsekar, Y. Chang, L. Ying, Magn. Reson. Med. 67, 1042–1053 (2012)

    Article  Google Scholar 

  12. B. Sharif, Y. Bresler, in: Proceedings of the IEEE International Symposium on Biomedical Imaging, Chicago, 2011, p. 52–56

  13. Y. Chang, D. Liang, L. Ying, Magn. Reson. Med. 68, 730–740 (2012)

    Article  Google Scholar 

  14. D. Wang, S. Bao, Chin. J. Med. Imaging Technol. 27, 1688–1693 (2011)

    Google Scholar 

  15. L. Chen, Y. Chang, L. Wang, L. Wang, Y. Xu, G. Zhang, X. Yang, Chin. J. Med. Phys. 32, 617–621 (2015)

    Google Scholar 

  16. M. Lustig, J.M. Pauly, Magn. Reson. Med. 64, 457–471 (2010)

    Google Scholar 

  17. P. Qu, C. Wang, G.X. Shen, J. Magn. Reson. Imaging 24, 248–255 (2006)

    Article  Google Scholar 

  18. X. Shi, X. Ma, W. Wu, F. Huang, C. Yuan, H. Guo, Magn. Reson. Med. 73, 1775–1785 (2015)

    Article  Google Scholar 

  19. M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, M. Lustig, IEEE Trans. Med. Imaging. 31, 1250–1262 (2012)

    Article  Google Scholar 

  20. K.H. Jin, D. Lee, J.C. Ye, IEEE Trans. Comput. Imaging. 2, 480–495 (2016)

    Article  MathSciNet  Google Scholar 

  21. C. Liao, Y. Chen, X. Cao, S. Chen, H. He, M. Mani, M. Jacob, V. Magnotta, J. Zhong, Magn. Reson. Med. 77, 1359–1366 (2017)

    Article  Google Scholar 

  22. M. Lustig, D. Donoho, J.M. Pauly, Magn. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  23. J. Zhang, J. Shi, H. Guang, S. Zuo, F. Liu, J. Bai, J. Luo, IEEE Trans. Biomed. Eng. 63, 1107–1115 (2016)

    Article  Google Scholar 

  24. D.J. Holland, D.M. Malioutov, A. Blake, A.J. Sederman, L.F. Gladden, J. Magn. Reson. 203, 236–246 (2010)

    Article  ADS  Google Scholar 

  25. Y. Chen, X. Ye, F. Huang, Inverse Problems Imaging 4, 223–240 (2017)

    Article  Google Scholar 

  26. R. Otazo, E. Candès, D.K. Sodickson, Magn. Reson. Med. 73, 1125–1136 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201445) and National Natural Science Foundation of China (Grant No. 11505281; 11675254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhu, J., Chang, Y. et al. An Improved Calibration Framework for Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). Appl Magn Reson 50, 103–120 (2019). https://doi.org/10.1007/s00723-018-1036-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1036-8

Navigation