Skip to main content
Log in

Effective thermoelastic properties of random structure composites reinforced by the clusters of deterministic structure (application to clay nanocomposites)

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Polymer/clay nanocomposites consisting of an epoxy matrix reinforced by silicate clay plates have been observed to exhibit enhanced mechanical properties at low volume fraction of clay. The matrix and embedded nanoelements are modeled in the framework of continuum mechanics with known mechanical properties previously evaluated by, e.g., molecular dynamic simulation. Nanoclay composite is modeled by the aligned, uniformly distributed in the matrix stacks of parallel clay sheets separated from one another by interlayer matrix galleries of nanometer scale. Interaction of a finite number of oblate spheroidal inclusions modeling an individual stack inside the infinite matrix is carried by the multipole expansion technique. The obtained accurate numerical solution was incorporated into the multiparticle effective field method [5] for the estimation of effective thermoelastic properties. Detailed parametric analyses demonstrate the influence on the effective elastic moduli and stress concentrator factors of such key factors as the shape of nanoelements, interlayer distance, and the number of nanoelements in the stacks of deterministic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Christensen R. M. (1979). Mechanics of composite materials. Wiley Interscience, New York

    Google Scholar 

  • Willis J. R. (1981). Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21: 1–78

    MATH  MathSciNet  Google Scholar 

  • Mura T. (1987). Micromechanics of defects in solids. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Nemat-Nasser S. and Hori M. (1993). Micromechanics: Overall properties of heterogeneous materials. Elsevier, North-Holland

    MATH  Google Scholar 

  • Buryachenko V. A. (2001). Multiparticle effective field and related methods in micromechanics of composite materials. Appl. Mech. Rev. 54: 1–47

    Article  Google Scholar 

  • Torquato, S.: Random heterogeneous materials: Microstructure and macroscopic properties. Springer 2002.

  • Milton, G. W.: The theory of composites. Appl. Comput. Math. vol. 6. Cambridge University Press 2002.

  • Kröner E. (1958). Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanstanten des Einkristalls. Z. Physik. 151: 504–518

    Article  Google Scholar 

  • Mori T. and Tanaka K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21: 571–574

    Article  Google Scholar 

  • Benveniste Y. (1987). A new approach to application of Mori-Tanaka's theory in composite materials. Mech. Mater. 6: 147–157

    Article  Google Scholar 

  • Lax M. (1952). Multiple scattering of waves II. The effective fields of dense systems. Phys. Rev. 85: 621–629

    Article  MATH  Google Scholar 

  • Luo J.-J. and Daniel I. M. (2003). Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Tech. 63: 1607–1616

    Article  Google Scholar 

  • Wang J. and Pyrz R. (2004). Prediction of the overall moduli of layered silicate-reinforced nanocomposites-Part I: basic theory and formulas. Compos. Sci. Tech. 64: 925–934

    Article  Google Scholar 

  • Wang J. and Pyrz R. (2004). Prediction of the overall moduli of layered silicate-reinforced nanocomposites-Part II: analysis. Compos. Sci. Tech. 64: 935–944

    Article  Google Scholar 

  • Sheng N., Boyce M. C., Parksa D. M., Rutledgeb G. C., Abesb J. I. and Cohenb R. E. (2004). Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45: 487–506

    Article  Google Scholar 

  • Buryachenko V. A., Roy A., Lafdi K., Anderson K. L. and Chellapilla S. (2005). Multi-scale mechanics of nanocomposites including interface: experimental and numerical investigation. Compos. Sci. Technol. 65: 2435–2465

    Article  Google Scholar 

  • Hui C. Y. and Shia D. (1998). Simple formulas for the effective moduli of unidirectional aligned composites. Polym. Engng. Sci. 38: 774–782

    Article  Google Scholar 

  • Halpin J. C. and Kardos J. L. (1976). The Halpin-Tsai equations: a review. Polym. Engng. Sci. 16: 344–352

    Article  Google Scholar 

  • Brune D. A. and Bicerano J. (2002). Micromechanics of nanocomposites: comparison of tensile and compressive elastic moduli and prediction of effects of incomplete exfoliation and imperfect alignment on modulus. Polymer 43: 369–387

    Article  Google Scholar 

  • Ji X. L., Jing J. K., Jiang W. and Jiang B. Z. (2002). Tensile modulus of polymer nanocomposites. Polym. Engng. Sci. 42: 983–993

    Article  Google Scholar 

  • Vaia R. A. and Giannelis E. P. (2001). Polymer nanocomposites: status and opportunities. MRS Bulletin 26(5): 394–401

    Google Scholar 

  • Kushch V. I. (1996). Elastic equilibrium of a medium containing finite number of aligned spheroidal inclusions. Int. J. Solids Struct. 33: 1175–1189

    Article  MATH  Google Scholar 

  • Kushch V. I. (1997). Microstresses and effective elastic moduli of a solid reinforced by periodically distributed spheroidal inclusions. Int. J. Solids Struct. 34: 1353–1366

    Article  MATH  Google Scholar 

  • Kushch V. I. (1998). Elastic equilibrium of a medium containing a finite number of arbitrarily oriented spheroidal inclusions. Int. J. Solids Struct. 35: 1187–1198

    Article  MATH  Google Scholar 

  • Kushch, V. I.: The stress state and effective thermoelastic properties of piece-homogeneous solids with spheroidal interfaces. Dr. Sci. thesis, Institute of Mechanics of the National Academy of Sciences, Kiev, Ukraine (1998).

  • Thostenson E. T., Ren Z.F. and Chou T.-W. (2001). Compos. Sci. Tech. 61: 1899–1912

    Article  Google Scholar 

  • Qian D., Wagner G. J., Liu W. K., Yu M.-F. and Ruoff R. S. (2002). Mechanics of carbon nanotubes. Appl. Mech. Rev. 55: 495–533

    Article  Google Scholar 

  • Zhang P., Huang Y., Philippe H. G. and Hwang K. (2002). On the continuum modeling of carbon nanotubes. Acta Mech. Sinica 18: 528–536

    Article  Google Scholar 

  • Gates T. S., Odegard G. M., Frankland S. J. V. and Clancy T. C. (2005). Computational materials: Multi-scale modeling and simulation of nanostructured materials. Compos. Sci. Technol. 65: 2416–2434

    Article  Google Scholar 

  • Willis J. R. (1983). The overall elastic response of composite materials. ASME J. Appl. Mech. 50: 1202–1209

    Article  MATH  Google Scholar 

  • Eshelby J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Royal Soc. Lond. A 241: 376–396

    MATH  MathSciNet  Google Scholar 

  • Buryachenko V. A. and Tandon G. P. (2004). Estimation of effective elastic properties of random structure composites for arbitrary inclusion shape and anisotropy of components using finite element analysis. Int. J. Multiscale Comput. Engng. 2: 29–45

    Article  Google Scholar 

  • Bornet M., Stolz C. and Zaoui A. (1996). Morphologically representative pattern-based bounding in elasticity. J. Mech. Phys. Solids 44: 307–331

    Article  MathSciNet  Google Scholar 

  • Levin, V. M.: Thermal expansion coefficient of heterogeneous materials. Izv. AN SSSR, Mekh. Tverd. Tela (2), 88–94 (In Russian; Engl. transl. Mech. Solids 2, 58–61) (1967).

  • Rosen B. W. and Hashin Z. (1970). Effective thermal expansion coefficient and specific heats of composite materials. Int. J. Engng. Sci. 8: 157–173

    Article  Google Scholar 

  • Hobson E. W. (1931). The theory of spherical and ellipsoidal harmonics. Cambridge University Press, Massachusetts

    Google Scholar 

  • Kushch V. I., Sangani A. S., Spelt P. D. M. and Koch D. L. (2002). Finite Weber number motion of bubbles through a nearly inviscid liquid. J. Fluid Mech. 460: 241–280

    Article  MATH  Google Scholar 

  • Abramovitz M. and Stegun I. A. (1964). Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Bateman G. and Erdelyi A. (1953). Higher transcendental functions 2. McGraw Hill, New York

    Google Scholar 

  • Tandon, G. P., Kim, R. Y., Rice, B. P.: Influence of vapor-grown carbon nanocomposites on thermomechanical properties of graphite-epoxy composites. Paper 2039 Proc. American Society for Composites 17th Technical Conference, Purdue University, West Lafayette, Indiana (2002).

  • Buryachenko V. A. and Roy A. (2005). Effective thermoelastic moduli and stress concentrator factors of nanocomposites. Acta Mech. 177: 149–169

    Article  MATH  Google Scholar 

  • Shia D., Hui C. Y., Burnside S. D. and Giannelis E. P. (1998). An interface model for the prediction of Young’s modulus of layered silicate-elastomer nanocomposites. Polym. Composite 19: 608–617

    Article  Google Scholar 

  • Kornmann X., Thomann R., Mülhaupt R., Finter J. and Berglund L. (2002). Synthesis of amine-curried, epoxy-layered silicate nanocomposites: the influence of the silicate surface modification on the properties. J. Appl. Polym. Sci. 86: 2643–2652

    Article  Google Scholar 

  • Lipatov, Y. S.: Polymer reinforcement. ChemTec Publishing 1995.

  • Lu J. P. (1997). Elastic properties of carbon nanotube and nanoropes. Phys. Rev. Lett. 79: 1297–1300

    Article  Google Scholar 

  • Salvetat J.-P., Briggs G. A., Bonard J.-M., Bacsa R. R. and Kulik A. J. (1999). Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82: 944–947

    Article  Google Scholar 

  • Norris A. N., Callegari A. J. and Sheng P. A. (1985). A generalized differential effective medium theory. J. Mech. Phys. Solids s33: 525–543

    Article  Google Scholar 

  • Buryachenko, V. A., Parton, V. Z.: Multi–particle differential methods in the statics of composites. Priklad. Mekh. Tekhn. Fiz. (3), 148–156 (In Russian; Engl. transl.: J. Appl. Mech. Tech. Phys. 33, 455–464) (1992).

  • Ponte Castañeda P. and Willis J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids 43: 1919–1951

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Buryachenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buryachenko, V.A., Kushch, V.I. & Roy, A. Effective thermoelastic properties of random structure composites reinforced by the clusters of deterministic structure (application to clay nanocomposites). Acta Mechanica 192, 135–167 (2007). https://doi.org/10.1007/s00707-006-0421-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-006-0421-9

Keywords

Navigation