Skip to main content
Log in

On the coupling of convective updrafts prior to secondary eyewall formation in Hurricane Katrina (2005)

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Hurricane Katrina (2005) was simulated by the Advanced Research Weather Research and Forecasting model to understand the mechanism of a secondary eyewall formation (SEF) prior to its last landfall. The storm underwent a series of structural changes that were deemed necessary for the concentric cycle to begin, which included (1) increased rainband activity outside the primary eyewall in the hours before, mostly related to an intensifying main feeder band, (2) close to initiation of the SEF, an updraft (explained by a pre-existing hypothesis) emerged outside the primary eyewall near the top of the boundary layer (BL), (3) this updraft then intensified and extended both upward and outward, while the storm intensified and approached SEF, (4) eventually, the updraft coupled with the upward motion associated with rainband-related convection near the SEF radius, and (5) once the alignment occurred, the deep updraft quickly organized to support deep convection that led to SEF within hours of initiation. The coupling of updrafts emanating from the BL with the environmental upward motion associated with the pre-existing rainband activity is proposed to be the key mechanism for the SEF initiation in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AHW:

Advanced Hurricane WRF

ARW:

Advanced Research WRF

BL:

Boundary layer

BV:

Bogus vortex

ERC:

Eyewall replacement cycle

HMW12:

Huang et al. (2012)

LH:

Latent heat

M:

Absolute angular momentum

MM5:

Fifth-generation mesoscale model

ORB:

Outer rainband

PBL:

Planetary boundary layer

PE:

Primary eyewall

PV:

Potential vorticity

PW:

Precipitable water

RAINEX:

The Hurricane Rainband and Intensity Change Experiment

RRTM:

Rapid radiative transfer model

SE:

Secondary eyewall

SEF:

Secondary eyewall formation

SMCZ:

Secondary maximum convergence zone

SST:

Sea surface temperature

TC:

Tropical cyclone

TM08:

Terwey and Montgomery (2008)

VHT:

Vortical hot tower

VRW:

Vortex Rossby wave

WRF:

Weather research and forecast model

References

  • Abarca SF (2011) Secondary eyewall formation in high resolution, realistic hurricane simulations, Ph.D. thesis. University of California Los Angeles, Los Angeles

    Google Scholar 

  • Abarca SF, Corbosiero KL (2011) Secondary eyewall formation in WRF simulations of hurricanes Katrina and Rita (2005). Geophys Res Lett 38:L07802. doi:10.1029/2011GL047015

    Article  Google Scholar 

  • Abarca SF, Montgomery MT (2013) Essential dynamics of secondary eyewall formation. J Atmos Sci 70:3216–3230

    Article  Google Scholar 

  • Abarca SF, Montgomery MT (2014) Departures from axisymmetric balance dynamics during secondary eyewall formation. J Atmos Sci 71:3723–3738

    Article  Google Scholar 

  • Bell M, Montgomery MT, Lee W (2012) An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J Atmos Sci. doi:10.1175/JAS-D-11-0167.1

    Article  Google Scholar 

  • Black ML, Willoughby HE (1992) the concentric eyewall cycle of Hurricane Gilbert. Mon Weather Rev 120:947–957

    Article  Google Scholar 

  • Chen Y, Yau MK (2001) Spiral bands in a simulated hurricane. Part I: vortex Rossby wave verification. J Atmos Sci 58:2128–2145

    Article  Google Scholar 

  • Davis CA, Wang W, Chen SS, Chen Y, Corbosiero K, DeMaria M, Dudhia J, Holland G, Klemp J, Michalakes J, Reeves H, Rotunno R, Snyder C, Xiao Q (2008) Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon Weather Rev 136:1990–2005

    Article  Google Scholar 

  • Didlake AC Jr, Houze RA Jr (2013) Convective-scale variations in the inner-core rainbands of a tropical cyclone. J Atmos Sci 70:504–523

    Article  Google Scholar 

  • Fierro AO, Rogers RF, Marks FD, Nolan DS (2009) The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon Weather Rev 137:3717–3743

    Article  Google Scholar 

  • Fredrick S, Davis C, Gill D, Low-Nam S (2009) Bogussing of tropical cyclones in WRF version 3.1. National Center for Atmospheric Research, Boulder. http://www.mmm.ucar.edu/wrf/users/workshops/WS2009/abstracts/P1-05.pdf. Retrieved 30 Jan 2014

  • Hawkins JD, Helveston M (2004) Tropical cyclone multiple eyewall characteristics. In: 26th conference on hurricanes and tropical meteorology, preprints AMS, Miami, pp 276–277

  • Hence DA, Houze RA Jr (2011) Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM precipitation radar. J Atmos Sci. doi:10.1175/JAS-D-11-0119.1

    Article  Google Scholar 

  • Houze RA Jr (2010) Clouds in tropical cyclones. Mon Weather Rev 138:293–344

    Article  Google Scholar 

  • Houze RA Jr et al (2006) The hurricane rainband and intensity change experiment observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull Am Meteorol Soc 87:1503–1521

    Article  Google Scholar 

  • Houze RA Jr, Chen SS, Smull BF, Lee W-C, Bell MM (2007) Hurricane intensity and eyewall replacement. Science 315(5816):1235–1239. doi:10.1126/science.1135650

    Article  Google Scholar 

  • Huang Y-H, Montgomery MT, Wu CC (2012) Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: axisymmetric dynamical processes. J Atmos Sci 69:662–674

    Article  Google Scholar 

  • Kepert JD (2001) The dynamics of boundary layer jets within the tropical cyclone core. Part I: linear theory. J Atmos Sci 58:2469–2484

    Article  Google Scholar 

  • Kepert JD (2012) Choosing a boundary layer parameterization for tropical cyclone modelling. Mon Weather Rev 140:1427–1445. doi:10.1175/MWR-D-11-00217.1

    Article  Google Scholar 

  • Kepert JD (2013) How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J Atmos Sci 70:2808–2830

    Article  Google Scholar 

  • Kepert JD, Nolan DS (2014) Analysis of a simulated tropical cyclone eyewall replacement cycle. In: 31st conference on hurricanes and tropical meteorology, preprints. AMS, San Diego

  • Knabb RD, Rhome JR, Brown DP (2005) Hurricane Katrina Tropical Cyclone Report. National Hurricane Center, Miami. http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf. Retrieved 19 Sept 2012

  • Kossin JP, Sitkowski M (2009) An objective model for identifying secondary eyewall formation in hurricanes. Mon Weather Rev 137:876–892

    Article  Google Scholar 

  • Kuo H-C, Lin L-Y, Chang C-P, Williams RT (2004) The formation of concentric vorticity structures in typhoons. J Atmos Sci 61:2722–2734

    Article  Google Scholar 

  • Kuo H-C et al (2008) Vortex interactions and barotropic aspects of concentric eyewall formation. Mon Weather Rev 136:5183–5198

    Article  Google Scholar 

  • Lin Y-L, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Martinez Y, Brunet G, Yau MK (2010) On the dynamics of two-dimensional hurricane-like concentric rings vortex formation. J Atmos Sci 67:3253–3268

    Article  Google Scholar 

  • Martinez Y, Brunet G, Yau MK, Wang X (2011) On the dynamics of concentric eyewall genesis: space-time empirical normal modes diagnosis. J Atmos Sci 68:457–476

    Article  Google Scholar 

  • Menelaou K, Yau MK, Martinez Y (2012) On the dynamics of the secondary eyewall genesis in Hurricane Wilma (2005). Geophys Res Lett 39:L04801. doi:10.1029/2011GL050699

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Molinari J, Skubis S (1985) Evolution of the surface wind field in an intensifying tropical cyclone. J Atmos Sci 42:2865–2879

    Article  Google Scholar 

  • Molinari J, Vollaro D (1989) External influences on hurricane intensity. Part I: outflow layer eddy angular momentum fluxes. J Atmos Sci 46:1093–1105

    Article  Google Scholar 

  • Montgomery MT, Kallenbach RJ (1997) A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Q J R Meteorol Soc 123:435–465

    Article  Google Scholar 

  • Montgomery MT, Abarca SF, Smith RK, Wu CC, Huang YH (2014) Comments on “How does the boundary layer contributes to eyewall replacement cycles in axisymmetric tropical cyclones?” by J. D. Kepert. J Atmos Sci 71:4682–4691

    Article  Google Scholar 

  • Muramatsu T (1986) The structure of polygonal eye of a typhoon. J Meteorol Soc Jpn 64:913–921

    Article  Google Scholar 

  • Nong S, Emanuel KA (2003) A numerical study of the genesis of concentric eyewalls in hurricanes. Q J R Meteorol Soc 129:3323–3338

    Article  Google Scholar 

  • Ooyama KV (1969) Numerical simulation of the life cycle of tropical cyclones. J Atmos Sci 26:3–40

    Article  Google Scholar 

  • Qiu X, Tan Z-M (2013) The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J Atmos Sci 70:953–974

    Article  Google Scholar 

  • Qiu X, Tan Z-M, Xiao Q (2010) The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon Weather Rev 138:2092–2109

    Article  Google Scholar 

  • Rozoff CM, Schubert WH, McNoldy BD, Kossin JP (2006) Rapid filamentation zones in intense tropical cyclones. J Atmos Sci 63:325–340

    Article  Google Scholar 

  • Rozoff CM, Nolan DS, Kossin JP, Zhang F, Fang J (2012) The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J Atmos Sci 69:2621–2643

    Article  Google Scholar 

  • Schubert WH, Montgomery MT, Taft RK, Guinn TA, Fulton SR, Kossin JP, Edwards JP (1999) Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J Atmos Sci 56:1197–1223

    Article  Google Scholar 

  • Sitkowski M, Kossin JP, Rozoff CM (2011) Intensity and structure changes during hurricane eyewall replacement cycles. Mon Weather Rev 139:3829–3847

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475?STR

  • Sun YQ, Jiang Y, Tan B, Zhang F (2013) The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J Atmos Sci 70:3818–3837

    Article  Google Scholar 

  • Tao W-K et al (2011) The impact of microphysical schemes on hurricane intensity and track. Asia Pac J Atmos Sci 47:1–16

    Article  Google Scholar 

  • Terwey WD, Montgomery MT (2008) Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J Geophys Res 113:D12112. doi:10.1029/2007JD008897

    Article  Google Scholar 

  • Wang Y (2002) Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: the role in tropical cyclone structure and intensity changes. J Atmos Sci 59:1239–1262

    Article  Google Scholar 

  • Wang X, Ma Y, Davidson NE (2013) SEFormation and eyewall replacement cycles in a simulated hurricane: effect of the net radial force in the hurricane boundary layer. J Atmos Sci 70:1317–1341

    Article  Google Scholar 

  • Willoughby HE (1998) Tropical cyclone eye thermodynamics. Mon Weather Rev 126:3053–3067

    Article  Google Scholar 

  • Willoughby HE, Closs JA, Shoreibah MG (1982) Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J Atmos Sci 39:395–411

    Article  Google Scholar 

  • Wu C-C, Huang Y-H, Lien G-Y (2012) Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon Weather Rev 140:506–527

    Article  Google Scholar 

  • Xiao Q, Chen L, Zhang X (2009) Evaluations of BDA scheme using the advanced research WRF (ARW) model. J Appl Meteorol Climatol 48:680–689

    Article  Google Scholar 

  • Zhou X, Wang B (2011) Mechanism of concentric eyewall replacement cycles and associated intensity change. J Atmos Sci 68:972–988

    Article  Google Scholar 

Download references

Acknowledgements

Comments by Drs. James Kossin, Ademe Mekonnen, Yevgenii Rastigejev, Jing Zhang, and three reviewers are highly appreciated. This research was supported by the National Science Foundation Awards AGS-1265783, HRD-1036563, OCI-1126543, and CNS-1429464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Lang Lin.

Additional information

Responsible Editor: M. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Rivera, J.M., Lin, YL. On the coupling of convective updrafts prior to secondary eyewall formation in Hurricane Katrina (2005). Meteorol Atmos Phys 131, 29–53 (2019). https://doi.org/10.1007/s00703-017-0557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-017-0557-2

Navigation