Skip to main content

Advertisement

Log in

Effect of vildagliptin versus glibenclamide on endothelial function and arterial stiffness in patients with type 2 diabetes and hypertension: a randomized controlled trial

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Several trials have reported that dipeptidyl peptidase-4 (DPP-4) inhibitors, used to treat type 2 diabetes (T2DM), improve endothelial function. The current study investigated the effects of vildagliptin, a DPP-4 inhibitor, compared to glibenclamide on endothelial function, arterial stiffness, and blood pressure in patients with T2DM and hypertension.

Methods

Patients aged over 35 years with T2DM and hypertension, but without cardiovascular disease, were randomly allocated to treatment with vildagliptin (n = 25) or glibenclamide (n = 25). Both groups took metformin. Endothelial function was evaluated by peripheral artery tonometry (Endo-PAT 2000) to calculate the reactive hyperemia index (RHI) and arterial stiffness. Primary outcome was change in the RHI after 12 weeks of treatment. Twenty-four-hour non-invasive ambulatory blood pressure monitoring was performed using a Mobil-O-Graph® 24-h PWA monitor. Arterial stiffness was assessed using the augmentation index corrected for 75 bpm (AIx75), pulse wave velocity (PWV) and central systolic blood pressure (cSBP).

Results

There were no changes in the RHI in the vildagliptin group (before 2.35 ± 0.59; after 2.24 ± 0.60; p value = NS) or in the glibenclamide group (before 2.36 ± 0.52; after 2.34 ± 0.50; p value = NS), with no differences between groups (p value = NS). There was also no difference between vildagliptin and glibenclamide treatment in respect to AIx75 (p value = NS), cSBP (p value = NS) or PWV (p value = NS).

Conclusions

Vildagliptin and glibenclamide similarly do not change the endothelial function and arterial stiffness after 12 weeks of treatment in diabetic and hypertensive patients without cardiovascular disease. Thus, vildagliptin has a neutral effect on vascular function.

Trial registration

ClinicalTrials.gov: NCT02145611, registered on 11 Jun 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABPM:

Ambulatory blood pressure monitoring

AIx:

Augmentation index

BMI:

Body mass index

BP:

Blood pressure

CAD:

Coronary artery disease

cSBP:

Central systolic blood pressure

CVD:

Cardiovascular disease

DBP:

Diastolic BP

DPP-4:

Dipeptidyl peptidase-4

eGFR:

Estimated glomerular filtration ratio

Endo-PAT 2000:

Peripheral artery tonometry

FMD:

Flow-mediated vasodilatation

GLP-1:

Glucagon-like peptide-1

HbA1c:

Glycated hemoglobin

HDLc:

High-density lipoprotein cholesterol

LDLc:

Low-density lipoprotein cholesterol

MBP:

Mean BP

PP:

Pulse pressure

PWV:

Pulse wave velocity

RHI:

Reactive hyperemia index

SBP:

Systolic BP

SD:

Standard deviation

T2DM:

Type 2 diabetes

TC:

Total cholesterol

TG:

Triglycerides

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chang AR, Cheng S, Chiuve SE et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. https://doi.org/10.1161/CIR.0000000000000558 (epub ahead of print)

    Article  PubMed  Google Scholar 

  2. Engelen SE, van der Graaf Y, Stam-Slob MC, Grobbee DE, Cramer MJ, Kappelle LJ et al (2017) Incidence of cardiovascular events and vascular interventions in patients with type 2 diabetes. Int J Cardiol 248:301–307

    Article  Google Scholar 

  3. Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287:1420–1426

    Article  Google Scholar 

  4. Penny WF, Ben-Yehuda O, Kuroe K, Long J, Bond A, Bhargava V et al (2001) Improvement of coronary artery endothelial dysfunction with lipid-lowering therapy: heterogeneity of segmental response and correlation with plasma-oxidized low density lipoprotein. J Am Coll Cardiol 37:766–774

    Article  CAS  Google Scholar 

  5. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705

    Article  CAS  Google Scholar 

  6. Ceriello A, Esposito K, Testa R, Bonfigli AR, Marra M, Giugliano D et al (2011) The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to the glucagon-like peptide 1 in diabetes. Diabetes Care 34:697–702

    Article  CAS  Google Scholar 

  7. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Druker DJ, Husain M (2008) Cardioprotective and vasodilatatory actions of glucagons-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117:2340–2350

    Article  CAS  Google Scholar 

  8. Gurkan E, Tarkun I, Sahin T, Cetinarslan B, Canturk Z (2014) Evaluation of exenatide versus insulin glargine for the impact on the endothelial functions and cardiovascular risk markers. Diabetes Res Clin Pract 106:567–575

    Article  CAS  Google Scholar 

  9. Van Poppel PC, Netea MG, Smits P, Tack CJ (2011) Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care 34:2072–2077

    Article  Google Scholar 

  10. Faber R, Zander M, Pena A, Michelsen MM, Mygind ND, Prescott E (2015) Effect of glucagon-like peptide-1 analogue liraglutide on coronary microvascular function in patients with type 2 diabetes—a randomized, single-blinded, cross-over pilot study. Cardiovasc Diabetol 14:41

    Article  Google Scholar 

  11. Ayaori M, Iwakami N, Uto-Kondo H, Sato H, Sasaki M, Komatsu T et al (2013) Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc 2:e003277

    Article  Google Scholar 

  12. Cosenso-Martin LN, Giollo-Junior LT, Vilela-Martin JF (2015) DPP-4 inhibitor reduces central blood pressure in a diabetic and hypertensive patient. Medicine (Baltimore) 94:e1068

    Article  Google Scholar 

  13. Scirica BM, Bhatt DL, Braunwald E, Steg G, Davidson J, Hirshberg B et al, for the SAVOR-TIMI 53 Steering Committee and Investigators (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326

    Article  CAS  Google Scholar 

  14. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL et al, for the EXAMINE Investigators (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335

    Article  CAS  Google Scholar 

  15. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J et al, TECOS Study Group (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373(3):232–242

    Article  CAS  Google Scholar 

  16. Balduino Mendes AB, Giollo LT Jr, de Andrade DO, Gregório ML, Yugar-Toledo JC, Vilela-Martin JF (2016) How to investigate the vascular changes in resistant hypertension. Curr Hypertens Rev 12:139–147

    Article  Google Scholar 

  17. Bonetti PO, Pumper GM, Higano ST, Holmes DR, Kuvin JT, Lerman A (2004) Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol 44:2137–2141

    Article  Google Scholar 

  18. Tedesco MA, Natale F, Di Salvo G, Caputo S, Capasso M, Calabró R (2004) Effects of coexisting hypertension and type II diabetes mellitus on arterial stiffness. J Hum Hypertens 18:469–473

    Article  CAS  Google Scholar 

  19. Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H et al (2006) Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 113:664–670

    Article  Google Scholar 

  20. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327

    Article  Google Scholar 

  21. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D et al (2006) Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 113:1213–1225

    Article  CAS  Google Scholar 

  22. Cosenso-Martin LN, Giollo-Junior LT, Martinelli DD, Cesarino CB, Nakazone MA, Cipullo JP et al (2015) Twelve-week randomized study to compare the effect if vildagliptin vs. glibenclamide both added-on to metformin on endothelium function in patients with type 2 diabetes and hypertension. Diabetol Metab Syndr 7:70

    Article  Google Scholar 

  23. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD et al (2008) Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 51(6):1403–1419

    Article  CAS  Google Scholar 

  24. Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ (2000) The influence of heart rate on augmentation index and central arterial pressure in human. J Physiol 525:263–270

    Article  CAS  Google Scholar 

  25. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med 130:461–470

    Article  CAS  Google Scholar 

  26. Evans M, Schweizer A, Foley JE (2016) Blood pressure and fasting lipid changes after 24 weeks’ treatment with vildagliptin: a pooled analysis in> 2,000 previously drug-naïve patients with type 2 diabetes mellitus. Vasc Health Risk Man 12:337–340

    Article  CAS  Google Scholar 

  27. Kubota Y, Miyamoto M, Takagi G, Ikeda T, Kirinoki-Ichikawa S, Tanaka K et al (2012) The dipeptidyl peptidase-4 inhibitor sitagliptin improves vascular endothelial function in type 2 diabetes. J Korean Med Sci 27:1364–1370

    Article  CAS  Google Scholar 

  28. Maruhashi T, Higashi Y, Kihara Y, Yamada H, Sata M, Ueda S et al (2016) Long-term effect of sitagliptin on endothelial function in type 2 diabetes: a sub-analysis of the PROLOGUE study. Cardiovasc Diabetol 15:134

    Article  Google Scholar 

  29. Nomoto H, Miyoshi H, Furumoto T, Oba K, Tsutsui H, Inoue A et al (2016) A randomized controlled trial comparing the effects of sitagliptin and glimepiride on endothelial function and metabolic parameters: Sapporo Athero-Incretin Study 1 (SAIS1). PLoS One 11(10):e0164255

    Article  Google Scholar 

  30. Baltzis D, Dushay JR, Loader J, Wu J, Greenman RL, Roustit M et al (2016) Effect of linagliptin on vascular function: a randomized, placebo-controlled study. J Clin Endocrinol Metab 101:4205–4213

    Article  CAS  Google Scholar 

  31. Kitao N, Miyoshi H, Furumoto T, Ono K, Nomoto H, Miya A et al (2017) The effects of vildagliptin compared with metformin on vascular endothelial function and metabolic parameters: a randomized, controlled trial (Sapporo Athero-Incretin Study 3). Cardiovasc Diabetol 16(1):125

    Article  Google Scholar 

  32. Nohria A, Gerhard-Herman M, Creager MA, Hurley S, Mitra D, Ganz P (2006) Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J Appl Physiol 101:545–548

    Article  CAS  Google Scholar 

  33. Allan RB, Delaney CL, Miller MD, Spark JI (2013) A comparison of flow-mediated dilatation and PAT for measurement of endothelial function in healthy individuals and patient with peripheral artery disease. Eur J Vasc Endovasc Surg 45:263–269

    Article  CAS  Google Scholar 

  34. Manrique C, Habibi J, Aroor AR, Sowers JR, Jia G, Hayden MR et al (2016) Dipeptidyl peptidase-4 inhibition with linagliptin prevents western diet-induced vascular abnormalities in female mice. Cardiovasc Diabetol 15:94

    Article  Google Scholar 

  35. Duvnjak L, Blaslov K (2016) Dipeptidyl peptidase-4 inhibitors improve arterial stiffness, blood pressure, lipid profile and inflammation parameters in patients with type 2 diabetes mellitus. Diabetol Metab Syndr 8:26

    Article  Google Scholar 

  36. Koren S, Shemesh-Bar L, Tirosh A, Peleg RK, Berman S, Hamad RA et al (2012) The effect of sitagliptin versus glibenclamide on arterial stiffness, blood pressure, lipids, and inflammation in type 2 diabetes mellitus patients. Diabetes Technol Ther 14:561–567

    Article  CAS  Google Scholar 

  37. Zografou I, Sampanis C, Gkaliagkousi E, Iliadis F, Papageorgiou A, Doukelis P et al (2015) Effect of vildagliptin on hsCRP and arterial stiffness in patients with type 2 diabetes mellitus. Hormones (Athens) 14:118–125

    Google Scholar 

  38. Gordin D, Saraheimo M, Tuomikangas J, Soro-Paavonen A, Forsblom C, Paavonen K et al (2016) Influence of postprandial hiperglycemic conditions on arterial stiffness in patients with type 2 diabetes. J Clin Endocrinol Metab 101(3):1134–1143

    Article  CAS  Google Scholar 

  39. Upala S, Wirunsawanya K, Jaruvongvanich V, Sanguankeo A (2017) Effects of statin therapy on arterial stiffness: a systematic review and meta-analysis of randomized controlled trial. Int J Cardiol 227:338–341

    Article  Google Scholar 

  40. Striepe K, Jumar A, Ott C, Karg MV, Scheneider MP, Kannenkeril D et al (2017) Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation 16:1167–1169

    Article  Google Scholar 

  41. Mamey A, Kunchakarra S, Byme L, Brown NJ (2010) Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans. Hypertension 56:728–733

    Article  Google Scholar 

  42. Ritchie LD, Campbell NC, Murchie P (2011) New NICE guidelines for hypertension. BMJ 343:d5644

    Article  CAS  Google Scholar 

  43. Kawase H, Bando YK, Nishimura K, Aoyama M, Monji A, Murohara T (2016) A dipeptidyl peptidase-4 inhibitor ameliorates hypertensive cardiac remodeling via angiotensin-II/sodium-proton pump exchanger-1 axis. J Mol Cell Cardiol 98:37–47

    Article  CAS  Google Scholar 

  44. Jackson EK, Mi Z, Tofovic SP, Gilleapie DG (2015) Effect of dipeptidyl peptidase 4 inhibition on arterial blood pressure is context dependent. Hypertension 65:238–249

    Article  CAS  Google Scholar 

  45. Barbieri M, Rizzo MR, Marfella R, Boccardi V, Esposito A, Pansini A et al (2013) Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors. Atherosclerosis 227(2):349–354

    Article  CAS  Google Scholar 

  46. Ishikawa S, Shimano M, Watarai M, Koyasu M, Uchikawa T, Ishii H et al (2014) Impact of sitagliptin on carotid intima-media thickness in patients with coronary artery disease and impaired glucose tolerance or mild diabetes mellitus. Am J Cardiol 114:384–388

    Article  CAS  Google Scholar 

  47. Mita T, Katakami N, Yoshii H, Onuma T, Kaneto H, Osonoi T et al (2016) Alogliptin, a dipeptidyl peptidase 4 inhibitor, prevents the progression of carotid atherosclerosis in patients with type 2 diabetes: the study of preventive effects of alogliptin on diabetic atherosclerosis (SPEAD-A). Diabetes Care 39:139–148

    Article  CAS  Google Scholar 

  48. Mita T, Katakami N, Shiraiwa T, Yoshii H, Onuma T, Kuribayashi N et al (2016) Sitagliptin attenuates the progression of carotid intima-media thickening in insulin treated patients with type 2 diabetes: the sitagliptin preventive study of intima-media thickness evaluation (SPIKE). A randomized controlled trial. Diabetes Care 39:455–464

    Article  CAS  Google Scholar 

  49. Alam MA, Chowdhury MRH, Jain P, Sagor MAT, Reza HM (2015) DPP-4 inhibitor sitagliptin prevents inflammation and oxidative stress of heart and kidney in two kidney and one clip (2K1C) rats. Diabetol Metab Syndr 7:107

    Article  Google Scholar 

  50. Sauder KA, West SG, McCrea CE, Campbell JM, Jenkins AL, Jenkins DJ et al (2014) Test–retest reliability of peripheral artery tonometry in the metabolic syndrome. Diabetes Vasc Dis Res 11:201–207

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients and staff who are participating in this clinical trial. We thank the reviewer David Hewitt for correcting both the English spelling and grammar and Lilian Castiglioni for the statistical analysis.

Funding

This study was sponsored by Novartis. However, Novartis did not have any influence on the study design, methods, data management or analysis.

Author information

Authors and Affiliations

Authors

Contributions

LNC-M and JFV-M contributed to the concept and design of this ongoing study. MAN and MNM take responsibility for the integrity of the data and accuracy of data analysis. LNC-M, LTG, LABF, CBC, JCY-T and JFV-M helped with the literature search. All authors read and approved the final manuscript. LNC-M and JFV-M wrote the manuscript.

Corresponding author

Correspondence to José Fernando Vilela-Martin.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethics approval and consent to participate

The study protocol (no. 11665513.7.00005415) was approved by the Research Ethics Committee of State Medical School at Sao Jose do Rio Preto (FAMERP) and the study was conducted in accordance with the principles of the Helsinki Declaration.

Consent for publications

Not applicable.

Conflict of interest

Jose F Vilela-Martin has received research grants from Novartis. The other authors do not have a conflict of interest.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosenso-Martin, L.N., Giollo-Júnior, L.T., Fernandes, L.A.B. et al. Effect of vildagliptin versus glibenclamide on endothelial function and arterial stiffness in patients with type 2 diabetes and hypertension: a randomized controlled trial. Acta Diabetol 55, 1237–1245 (2018). https://doi.org/10.1007/s00592-018-1204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-018-1204-1

Keywords

Navigation