Skip to main content
Log in

Logit Dynamics with Concurrent Updates for Local Interaction Potential Games

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Logit choice dynamics constitute a family of randomized best response dynamics based on the logit choice function (McFadden in Frontiers in econometrics. Academic Press, New York, 1974) that models players with limited rationality and knowledge. In this paper we study the all-logit dynamics [also known as simultaneous learning (Alós-Ferrer and Netzer in Games Econ Behav 68(2):413–427, 2010)], where at each time step all players concurrently update their strategies according to the logit choice function. In the well studied (one-)logit dynamics (Blume in Games Econ Behav 5(3):387–424, 1993) instead at each step only one randomly chosen player is allowed to update. We study properties of the all-logit dynamics in the context of local interaction potential games, a class of games that has been used to model complex social phenomena (Montanari and Saberi 2009; Peyton in The economy as a complex evolving system. Oxford University Press, Oxford, 2003) and physical systems (Levin et al. in Probab Theory Relat Fields 146(1–2):223–265, 2010; Martinelli in Lectures on probability theory and statistics. Springer, Berlin, 1999). In a local interaction potential game players are the vertices of a social graph whose edges are two-player potential games. Each player picks one strategy to be played for all the games she is involved in and the payoff of the player is the sum of the payoffs from each of the games. We prove that local interaction potential games characterize the class of games for which the all-logit dynamics is reversible. We then compare the stationary behavior of one-logit and all-logit dynamics. Specifically, we look at the expected value of a notable class of observables, that we call decomposable observables. We prove that the difference between the expected values of the observables at stationarity for the two dynamics depends only on the rationality level \(\beta \) and on the distance of the social graph from a bipartite graph. In particular, if the social graph is bipartite then decomposable observables have the same expected value. Finally, we show that the mixing time of the all-logit dynamics has the same twofold behavior that has been highlighted in the case of the one-logit: for some games it exponentially depends on the rationality level \(\beta \), whereas for other games it can be upper bounded by a function independent from \(\beta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. A stochastically stable state is a state that has non-zero probability as \(\beta \) goes to infinity [42].

References

  1. Alós-Ferrer, C., Netzer, N.: The logit-response dynamics. Games Econ. Behav. 68(2), 413–427 (2010)

    Article  MATH  Google Scholar 

  2. Alós-Ferrer, C., Netzer, N.: Robust stochastic stability. ECON—working papers 063, Department of Economics, University of Zurich (Feb 2012)

  3. Anderson, S.P., Goeree, J.K., Holt, C.A.: Minimum-effort coordination games: stochastic potential and logit equilibrium. Games Econ. Behav. 34(2), 177–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design with selfish agents. Theory Comput. 4(1), 77–109 (2008)

    Article  MathSciNet  Google Scholar 

  5. Asadpour, A., Saberi, A.: On the inefficiency ratio of stable equilibria in congestion games. In: Proceedings of the 5th International Workshop on Internet and Network Economics (WINE’09), volume 5929 of Lecture Notes in Computer Science, pp 545–552. Springer (2009)

  6. Auletta, V., Ferraioli, D., Pasquale, F., Penna, P., Persiano, G.: Convergence to equilibrium of logit dynamics for strategic games. In: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’11), pp. 197–206. ACM (2011)

  7. Auletta, V., Ferraioli, D., Pasquale, F., Persiano, G.: Metastability of logit dynamics for coordination games. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’12), pp. 1006–1024. SIAM (2012)

  8. Auletta, V., Ferraioli, D., Pasquale, F., Persiano, G.: Mixing time and stationary expected social welfare of logit dynamics. Theory Comput. Syst. 53(1), 3–40 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Babichenko, Y., Tamuz, O.: Graphical potential games. arXiv preprint arXiv:1405.1481 (2014)

  10. Bala, V., Goyal, S.: A noncooperative model of network formation. Econometrica 68(5), 1181–1229 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Baron, R., Durieu, J., Haller, H., Solal, P.: A note on control costs and logit rules for strategic games. J. Evolut. Econ. 12(5), 563–575 (2002)

    Article  Google Scholar 

  12. Baron, R., Durieu, J., Haller, H., Solal, P.: Control costs and potential functions for spatial games. Int. J. Game Theory 31(4), 541–561 (2003)

    Article  MathSciNet  Google Scholar 

  13. Berger, N., Kenyon, C., Mossel, E., Peres, Y.: Glauber dynamics on trees and hyperbolic graphs. Probab. Theory Relat. Fields 131, 311–340 (2005). Preliminary version in FOCS 01

    Article  MATH  MathSciNet  Google Scholar 

  14. Bindel, D., Kleinberg, J.M., Oren, S.: How bad is forming your own opinion? In: Proceedings of the 52nd IEEE Annual Symposium on Foundations of Computer Science (FOCS’11), pp. 57–66 (2011)

  15. Blume, L.E.: The statistical mechanics of strategic interaction. Games Econ. Behav. 5(3), 387–424 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Borgs, C., Chayes, J.T., Ding, J., Lucier, B.: The hitchhiker’s guide to affiliation networks: a game-theoretic approach. In: Proceedings of the 2nd Symposium on Innovation in Computer Science (ICS’11), pp. 389–400. Tsinghua University Press (2011)

  17. Borgs, C., Chayes, J.T., Karrer, B., Meeder, B., Ravi, R., Reagans, R., Sayedi, A.: Game-theoretic models of information overload in social networks. In: Proceedings of the 7th Workshop on Algorithms and Models for the Web Graph (WAW’10), pp. 146–161 (2010)

  18. Corbo, J., Parkes, D.C.: The price of selfish behavior in bilateral network formation. In: Proceedings of the 24th Annual ACM Symposium on Principles of Distributed Computing (PODC’05), pp. 99–107 (2005)

  19. Cournot, A.A.: Recherches sur le Principes mathematiques de la Theorie des Richesses. L. Hachette, Paris (1838)

    Google Scholar 

  20. Ellison, G.: Learning, local interaction, and coordination. Econometrica 61(5), 1047–1071 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fabrikant, A., Luthra, A., Maneva, E.N., Papadimitriou, C.H., Shenker, S.: On a network creation game. In: Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed Computing (PODC’03), pp. 347–351 (2003)

  22. Ferraioli, D., Goldberg, P., Ventre, C.: Decentralized dynamics for finite opinion games. In: Proceedings of the 5th Internationl Symposium on Algorithmic Game Theory (SAGT’12), pp. 144–155. Springer, Berlin (2012)

  23. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  24. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1992)

    Google Scholar 

  25. Goeree, J.K., Holt, C.A.: Stochastic game theory: for playing games, not just for doing theory. Proc. Natl. Acad. Sci. 96(19), 10564–10567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. John, C.: Harsanyi and Reinhard Selten. A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge (1988)

    Google Scholar 

  27. Hart, S., Mas-Colell, A.: A general class of adaptive procedures. J. Econ. Theory 98(1), 26–54 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jackson, M.O., Wolinsky, A.: A strategic model of social and economic networks. J. Econ. Theory 71(1), 44–74 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kelly, F.: Reversibility and Stochastic Networks. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  30. Kleinberg, J.M., Oren, S.: Mechanisms for (mis)allocating scientific credit. In: Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC’11), pp. 529–538 (2011)

  31. Landau, L.D., Lifshitz, E.M.: Statistical Physics, vol. 5. Elsevier Science, Burlington (1996)

    Google Scholar 

  32. Levin, D., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2008)

    Google Scholar 

  33. Levin, D.A., Luczak, M., Peres, Y.: Glauber dynamics for the mean-field Ising model: cut-off, critical power law, and metastability. Probab. Theory Relat. Fields 146(1–2), 223–265 (2010)

    Article  MathSciNet  Google Scholar 

  34. Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. In: Lectures on Probability Theory and Statistics, volume 1717 of Lecture Notes in Mathematics, pp. 93–191. Springer, Berlin Heidelberg (1999)

  35. McFadden, D.L.: Conditional logit analysis of qualitative choice behavior. In: Frontiers in Econometrics, pp. 105–142. Academic Press, New York (1974)

  36. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  37. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Montanari, A., Saberi, A.: Convergence to equilibrium in local interaction games. In: Proceedings of 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09), pp. 303–312 (2009)

  39. Morris, S.: Contagion. Rev. Econ. Stud. 67(1), 57–78 (2000)

    Article  MATH  Google Scholar 

  40. Peyton, H.P.: The diffusion of innovations in social networks. In: Blume, L.E., Durlauf, S.N. (eds.) The Economy as a Complex Evolving System, vol. III. Oxford University Press, Oxford (2003)

    Google Scholar 

  41. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)

    Article  MATH  Google Scholar 

  42. Sandholm, William H.: Population Games and Evolutionary Dynamics. MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  43. Trevisan, L.: Max cut and the smallest eigenvalue. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, (STOC’09), pp 263–272. ACM (2009)

  44. Weidenholzer, S.: Coordination games and local interactions: a survey of the game theoretic literature. Games 1(4), 551–585 (2010)

    Article  MathSciNet  Google Scholar 

  45. Wolpert, D.H.: Information theory—the bridge connecting bounded rational game theory and statistical physics. In: Braha, D., Minai, A.A., Bar-Yam, Y. (eds.) Complex Engineered Systems. Understanding Complex Systems, vol. 14, pp. 262–290. Springer Berlin Heidelberg (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diodato Ferraioli.

Additional information

Vincenzo Auletta and Giuseppe Persiano are supported by Italian MIUR under the PRIN 2010–2011 project ARS TechnoMedia—Algorithmics for Social Technological Networks. Diodato Ferraioli and Francesco Pasquale are supported by EU FET project MULTIPLEX 317532.

Appendix: Mixing Time of the All-Logit for the Curie–Weiss Model

Appendix: Mixing Time of the All-Logit for the Curie–Weiss Model

Here we prove upper and lower bounds on the mixing time of the all-logit dynamics for a special graphical coordination game, the CW-game. In such a game we set \(a = b = +1\) and \(c = d = -1\). Thus, the utility of player \(i \in [n]\) is the sum of the number of players playing the same strategy as \(i\), minus the number of players playing the opposite strategy; that is, the utility of player \(i \in [n]\) at profile \({\mathbf {x}}= (x_1, \ldots , x_n) \in \{-1,+1\}^n\) is

$$\begin{aligned} u_i({\mathbf {x}}) = x_i \sum _{j\ne i} x_j. \end{aligned}$$

It is easy to see that the potential function for this game is

$$\begin{aligned} \Phi ({\mathbf {x}}) = - \sum _{\{i,j\} \in \left( {\begin{array}{c}[n]\\ 2\end{array}}\right) } x_i x_j. \end{aligned}$$

Due to the high level of symmetry of the game, the potential of a profile \({\mathbf {x}}\) depends only on the number of players playing \(\pm 1\). Indeed, we can rewrite the potential of \({\mathbf {x}}\) as

$$\begin{aligned} \Phi ({\mathbf {x}}) = - \frac{{\mathsf {Diff}}^2({\mathbf {x}}) - n}{2}, \end{aligned}$$

where \({\mathsf {Diff}}\) is the observable described in Sect. 5.1.

The upper bound Observe that, for the Curie–Weiss model we have \(\Delta U = 2n(n-1)\), hence by using Theorem 6.3 we get directly that

$$\begin{aligned} {t_{\mathrm{mix}}}= {\mathcal {O}}\left( e^{2 \beta n (n-1)} \right) . \end{aligned}$$
(16)

Hence it follows that mixing time is \({\mathcal {O}}(1)\) for \(\beta = {\mathcal {O}}(1/n^2)\) and it is \({\mathcal {O}}(\text {poly}(n))\) for \(\beta = {\mathcal {O}}(\log n / n^2)\).

In what follows we show that factor “2” at the exponent in (16) can be removed and that a slightly better upper bound can be given for \(\beta > \log n / n\).

Lemma 7.1

For every \({\mathbf {x}},{\mathbf {y}}\in \Omega \) it holds that

$$\begin{aligned} P({\mathbf {x}},{\mathbf {y}}) \geqslant q^{(n+|{\mathsf {Diff}}({\mathbf {y}})|)/2} (1-q)^{(n-|{\mathsf {Diff}}({\mathbf {y}})|)/2} \end{aligned}$$

where

$$\begin{aligned} q= \frac{1}{1 + e^{2 \beta (n-1)}}. \end{aligned}$$

Proof

Consider a profile \({\mathbf {y}}\in \{-1,+1\}^n\). Observe that the number of players playing \(+1\) and \(-1\) in \({\mathbf {y}}\) can be written as \(\frac{n + {\mathsf {Diff}}({\mathbf {y}})}{2}\) and \(\frac{n - {\mathsf {Diff}}({\mathbf {y}})}{2}\), respectively. If \({\mathsf {Diff}}({\mathbf {y}}) > 0\), i.e. if the number of players playing \(+1\) is larger than the number of players playing \(-1\), then the profile that minimizes \(P({\mathbf {x}},{\mathbf {y}})\) is profile \({\mathbf {x}}_{-} = (-1, \ldots , -1)\) where every player plays \(-1\). If we name

$$\begin{aligned} q = \frac{e^{- \beta (n-1)}}{e^{- \beta (n-1)} + e^{\beta (n-1)}} = \frac{1}{1+e^{2\beta (n-1)}} \end{aligned}$$

the probability that a player in \({\mathbf {x}}_{-}\) chooses strategy \(+1\) for the next round, we have that

$$\begin{aligned} P({\mathbf {x}}_{-},{\mathbf {y}}) = q^{\frac{n + {\mathsf {Diff}}({\mathbf {y}})}{2}} (1-q)^{\frac{n - {\mathsf {Diff}}({\mathbf {y}})}{2}}. \end{aligned}$$

On the other hand, if \({\mathsf {Diff}}({\mathbf {y}}) < 0\), then \(P({\mathbf {x}},{\mathbf {y}})\) is minimized when \({\mathbf {x}}= {\mathbf {x}}_{+} = (+1,\ldots ,+1)\) and, since \(q\) is also the probability that a player in \({\mathbf {x}}_{+}\) chooses strategy \(-1\) for the next round, we have that

$$\begin{aligned} P({\mathbf {x}}_{+},{\mathbf {y}}) = q^{\frac{n - {\mathsf {Diff}}({\mathbf {y}})}{2}} (1-q)^{\frac{n + {\mathsf {Diff}}({\mathbf {y}})}{2}} \end{aligned}$$

and the thesis follows. \(\square \)

Now we can give an upper bound on the mixing time by using Lemmata 6.1 and 7.1.

Theorem 7.2

(Upper bound) The mixing time of the all-logit dynamics for the Curie–Weiss model is

$$\begin{aligned} {t_{\mathrm{mix}}}= {\mathcal {O}}\left( n e^{\beta n^2} \right) . \end{aligned}$$

If \(\beta \geqslant \log n / n\) the mixing time is

$$\begin{aligned} {t_{\mathrm{mix}}}= {\mathcal {O}}\left( \frac{n e^{\beta n^2}}{2^n} \right) . \end{aligned}$$

Proof

From Lemma 7.1 it follows that for every \({\mathbf {y}}\in \{-1,+1 \}^n\) we have

$$\begin{aligned} \alpha _{{\mathbf {y}}} = \min \{ P({\mathbf {x}},{\mathbf {y}}) \mid {\mathbf {x}}\in \{-1,+1\}^n \} \geqslant q^{(n+|{\mathsf {Diff}}({\mathbf {y}})|)/2} (1-q)^{(n-|{\mathsf {Diff}}({\mathbf {y}})|)/2}. \end{aligned}$$

Hence

$$\begin{aligned} \alpha = \sum _{{\mathbf {y}}\in \{-1,+1\}^n} \alpha _{{\mathbf {y}}} \geqslant \sum _{{\mathbf {y}}\in \{-1,+1\}^n} q^{(n+|{\mathsf {Diff}}({\mathbf {y}})|)/2} (1-q)^{(n-|{\mathsf {Diff}}({\mathbf {y}})|)/2}. \end{aligned}$$
(17)

Now observe that there are \(\left( {\begin{array}{c}n\\ \frac{n-k}{2}\end{array}}\right) \) profiles \({\mathbf {y}}\) such that \({\mathsf {Diff}}({\mathbf {y}}) = k\), and since \(q \leqslant 1/2\), the largest terms in (17) are the ones such that \({\mathsf {Diff}}({\mathbf {y}})\) is as close to zero as possible. In order to give a lower bound to \(\alpha \) we will thus consider only profiles \({\mathbf {y}}\) such that \({\mathsf {Diff}}({\mathbf {y}}) = 0\), when \(n\) is even, and profiles \({\mathbf {y}}\) such that \({\mathsf {Diff}}({\mathbf {y}}) = \pm 1\), when \(n\) is odd.

Case \(n\) even: If we consider only profiles \({\mathbf {y}}\) such that \({\mathsf {Diff}}({\mathbf {y}}) = 0\) in (17) we have that

$$\begin{aligned} \alpha \geqslant \left( {\begin{array}{c}n\\ n/2\end{array}}\right) [q(1-q)]^{n/2}. \end{aligned}$$

By using a standard lower bound for the binomial coefficient (see e.g. Lemma 9.2 in [36]) we have that

$$\begin{aligned} \left( {\begin{array}{c}n\\ n/2\end{array}}\right) \geqslant \frac{2^n}{n+1}. \end{aligned}$$

As for \([q(1-q)]^{n/2}\) we have that

$$\begin{aligned} q(1-q)&= \frac{1}{1+e^{2\beta (n-1)}} \cdot \frac{1}{1+e^{-2\beta (n-1)}} \nonumber \\&= \frac{1}{e^{2\beta (n-1)} + 2 + e^{-2\beta (n-1)}} \nonumber \\&= \frac{1}{e^{2\beta (n-1)} \left( 1 + 2 e^{-2\beta (n-1)} + e^{-4 \beta (n-1)} \right) }. \end{aligned}$$
(18)

Now observe that for every \(\beta \geqslant 0\) we can bound \(1 + 2 e^{-2\beta (n-1)} + e^{-4 \beta (n-1)} \leqslant 4\). Thus we have that

$$\begin{aligned}{}[q(1-q)]^{n/2} \geqslant \frac{1}{2^n e^{\beta n(n-1)}}. \end{aligned}$$
(19)

Hence

$$\begin{aligned} \alpha \geqslant \left( {\begin{array}{c}n\\ n/2\end{array}}\right) [q(1-q)]^{n/2} \geqslant \frac{1}{(n+1) e^{\beta n(n-1)}}. \end{aligned}$$

And by using Lemma 6.1 we have

$$\begin{aligned} {t_{\mathrm{mix}}}= {\mathcal {O}}\left( n e^{\beta n(n-1)} \right) . \end{aligned}$$

If \(\beta \) is large enough, say \(\beta \geqslant \log n / n\), in (18) we can bound

$$\begin{aligned} 1 + 2 e^{-2\beta (n-1)} + e^{-4 \beta (n-1)} \leqslant 1 + \frac{1}{n}. \end{aligned}$$

Thus, in this case we have that

$$\begin{aligned}{}[q(1-q)]^{n/2} \geqslant \frac{1}{e^{\beta n (n-1)} \left( 1 + 1/n \right) ^{(n/2)}} \geqslant \frac{1}{e^{\beta n(n-1)} \cdot \sqrt{e}}. \end{aligned}$$
(20)

Hence \(\alpha \geqslant \frac{2^n}{(n+1) e^{1/2 + \beta n(n-1)}}\) and

$$\begin{aligned} {t_{\mathrm{mix}}}= {\mathcal {O}}\left( \frac{n e^{\beta n(n-1)}}{2^n} \right) . \end{aligned}$$

Case \(n\) odd: If we consider only profiles \({\mathbf {y}}\) such that \({\mathsf {Diff}}({\mathbf {y}}) = \pm 1\) in (17) we get

$$\begin{aligned} \alpha \geqslant 2 \left( {\begin{array}{c}n\\ \frac{n+1}{2}\end{array}}\right) q^{\frac{n+1}{2}} (1-q)^{\frac{n-1}{2}} = 2 \left( {\begin{array}{c}n\\ \frac{n+1}{2}\end{array}}\right) \left( q(1-q)\right) ^{n/2} \sqrt{\frac{q}{1-q}}. \end{aligned}$$

Now observe that

$$\begin{aligned} \sqrt{\frac{q}{1-q}} = e^{-\beta (n-1)} \qquad \text{ and } \qquad \left( {\begin{array}{c}n\\ \frac{n+1}{2}\end{array}}\right) \geqslant \frac{1}{2} \cdot \frac{2^n}{n+1}. \end{aligned}$$

By using bounds (19) and (20) for \([q(1-q)]^{n/2}\) we get \({t_{\mathrm{mix}}}= {\mathcal {O}}\left( n e^{\beta (n^2 - 1)} \right) \) for every \(\beta \geqslant 0\) and \({t_{\mathrm{mix}}}= {\mathcal {O}}\left( \frac{n e^{\beta (n^2-1)}}{2^n} \right) \) for \(\beta \geqslant \log n / n\). \(\square \)

The lower bound In order to give a lower bound on the mixing time, we first show that, for the Curie–Weiss model, \(K({\mathbf {x}},{\mathbf {y}})\) can be written as a function of \({\mathsf {Diff}}({\mathbf {x}})\), \({\mathsf {Diff}}({\mathbf {y}})\) and of the Hamming distance between the two profiles.

Lemma 7.3

Let \({\mathbf {x}},{\mathbf {y}}\in \{-1,+1\}^n\) be two profiles with magnetization \({\mathsf {Diff}}({\mathbf {x}})\) and \({\mathsf {Diff}}({\mathbf {y}})\) respectively and let \(h_{{\mathbf {x}},{\mathbf {y}}}\) be their Hamming distance, i.e. the number of players where they differ. Then

$$\begin{aligned} K({\mathbf {x}}, {\mathbf {y}}) = n - {\mathsf {Diff}}({\mathbf {x}}) \cdot {\mathsf {Diff}}({\mathbf {y}}) - 2 h_{{\mathbf {x}},{\mathbf {y}}}. \end{aligned}$$

Proof

As stated above, \(\Phi ({\mathbf {x}}) = \frac{n - {\mathsf {Diff}}^2({\mathbf {x}})}{2}\). In order to evaluate \(K({\mathbf {x}},{\mathbf {y}}) = \sum _{i=1}^n \Phi ({\mathbf {x}}_{-i}, y_i) - (n - 2) \Phi ({\mathbf {x}})\) let us name \(n_1,n_2\) and \(n_3\) as follows

$$\begin{aligned} n_1&= \# \{ i \in [n] :x_i = y_i \};\\ n_2&= \# \{ i \in [n] :x_i = +1, y_i = -1 \};\\ n_3&= \# \{ i \in [n] :x_i = -1, y_i = +1 \}. \end{aligned}$$

In other words, \(n_1\) is the number of players playing the same strategy in profiles \({\mathbf {x}}\) and \({\mathbf {y}}\), \(n_2\) is the number of players playing \(+1\) in \({\mathbf {x}}\) and \(-1\) in \({\mathbf {y}}\), and \(n_3\) the number of players playing \(-1\) in \({\mathbf {x}}\) and \(+1\) in \({\mathbf {y}}\). It holds that

$$\begin{aligned} \sum _{i=1}^n \Phi ({\mathbf {x}}_{-i}, y_i)&= n_1 \frac{n- {\mathsf {Diff}}^2({\mathbf {x}})}{2} + n_2 \frac{n - ({\mathsf {Diff}}({\mathbf {x}}) -2)^2}{2} + n_3 \frac{n - ({\mathsf {Diff}}({\mathbf {x}})+2)^2}{2}\nonumber \\&= \frac{1}{2} \Big ( (n_1+n_2+n_3) (n - {\mathsf {Diff}}^2({\mathbf {x}}))\nonumber \\&+\, 4(n_2-n_3) {\mathsf {Diff}}({\mathbf {x}}) - 4 (n_2+n_3) \Big ). \end{aligned}$$
(21)

Now observe that \(n_1+n_2+n_3 = n\), \(2(n_2-n_3) = {\mathsf {Diff}}({\mathbf {x}}) - {\mathsf {Diff}}({\mathbf {y}})\), and \((n_2+n_3) = h_{{\mathbf {x}},{\mathbf {y}}}\). Hence from (21) we get

$$\begin{aligned} \begin{aligned} \sum _{i=1}^n \Phi ({\mathbf {x}}_{-i}, y_i)&= \frac{1}{2} \left( n (n+{\mathsf {Diff}}^2({\mathbf {x}})) + 2({\mathsf {Diff}}({\mathbf {x}})-{\mathsf {Diff}}({\mathbf {y}})) {\mathsf {Diff}}({\mathbf {x}}) -4 h_{{\mathbf {x}},{\mathbf {y}}}\right) \\&= \frac{n^2}{2} - \frac{n-2}{2} {\mathsf {Diff}}^2({\mathbf {x}}) - {\mathsf {Diff}}({\mathbf {x}}){\mathsf {Diff}}({\mathbf {y}}) - 2 h_{{\mathbf {x}},{\mathbf {y}}}. \end{aligned} \end{aligned}$$
(22)

Thus \(K({\mathbf {x}},{\mathbf {y}}) = n - {\mathsf {Diff}}({\mathbf {x}}) \cdot {\mathsf {Diff}}({\mathbf {y}}) - 2 h_{{\mathbf {x}},{\mathbf {y}}}\). \(\square \)

Since the Hamming distance between two profiles is at most \(n\), from the above lemma we get the following observation.

Observation 7.4

Let \({\mathbf {x}},{\mathbf {y}}\) be two profiles with \({\mathsf {Diff}}({\mathbf {x}}) \cdot {\mathsf {Diff}}({\mathbf {y}}) \leqslant 0\), then \(K({\mathbf {x}},{\mathbf {y}}) \geqslant -n\).

Now we can give a lower bound on the mixing time by using the bottleneck-ratio technique.

Theorem 7.5

(Lower bound) The mixing time of the all-logit dynamics for the Curie–Weiss model is

$$\begin{aligned} {t_{\mathrm{mix}}}= \Omega \left( \frac{e^{\beta n(n - 2)}}{4^n} \right) . \end{aligned}$$

Proof

Let \(S_- \subseteq \{-1,+1\}^n\) be the set of profiles \({\mathbf {x}}\) such that \({\mathsf {Diff}}({\mathbf {x}}) < 0\), i.e.

$$\begin{aligned} S_- = \{ {\mathbf {x}}\in \{-1,+1\}^n :{\mathsf {Diff}}({\mathbf {x}}) < 0 \} \end{aligned}$$

and observe that \(\pi (S_-) \leqslant 1/2\). From Observation 7.4 we have that for every \({\mathbf {x}}\in S_-\) and \({\mathbf {y}}\in S_+ = \{-1,+1\}^n \setminus S_-\) it holds that

$$\begin{aligned} \pi ({\mathbf {x}})P({\mathbf {x}},{\mathbf {y}}) = \frac{e^{-\beta K({\mathbf {x}},{\mathbf {y}})}}{Z} \leqslant \frac{e^{\beta n}}{Z}. \end{aligned}$$
(23)

Moreover, if we name \({\mathbf {x}}_{-}\) the profile where everyone is playing \(-1\) we have that

$$\begin{aligned} \pi (S_-) \geqslant \pi ({\mathbf {x}}_{-}) \geqslant \frac{1}{Z} e^{-2\beta \Phi ({\mathbf {x}}_{-})} = \frac{1}{Z} e^{\beta n(n-1)}. \end{aligned}$$
(24)

Hence, by using bounds (23) and (24), and the fact that the size of \(S_-\) is at most \(2^{n-1}\), we can bound the bottleneck at \(S_-\) with

$$\begin{aligned} B(S_-) = \frac{Q(S_-,S_+)}{\pi (S_-)} = \frac{\sum _{{\mathbf {x}}\in S_-} \sum _{{\mathbf {y}}\in S_+} \pi ({\mathbf {x}}) P({\mathbf {x}},{\mathbf {y}})}{\pi (S_-)} \leqslant \frac{2^{2n-2} e^{\beta n}}{e^{\beta n(n-1)}} = \frac{2^{2n-2}}{e^{\beta n (n-2)}}. \end{aligned}$$

By using the bottleneck-ratio theorem (see e.g. Theorem 7.3 in [32]) it follows that

$$\begin{aligned} {t_{\mathrm{mix}}}= \Omega \left( \frac{e^{\beta n (n-2)}}{2^{2n}} \right) . \end{aligned}$$

\(\square \)

Remark

In this section we proved upper and lower bounds on the mixing time of the all-logit dynamics for the Curie–Weiss model. In particular, the upper bound shows that for \(\beta = {\mathcal {O}}(1/n^2)\) the mixing time is constant and for \(\beta = {\mathcal {O}}( \log n / n^2)\) it is at most polynomial. The lower bound shows that, for every constant \(\varepsilon > 0\), if \(\beta > (1+\varepsilon ) (\log 4) /n\) the mixing time is exponential. When \(\beta \) is between \(\Theta (\log n /n^2)\) and \(\Theta (1/n)\) we still cannot say if mixing is polynomial or exponential. This is to be compared with the mixing time of the one-logit dynamics: in this case, the dynamics are known to quickly converge to the stationary distribution for \(\beta = {\mathcal {O}}(\log n / n^2)\) and to take super-polynomial time for \(\beta = \omega (\log n / n^2)\) [6]. Hence, the mixing time of the all-logit asymptotically matches the mixing time of the one-logit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auletta, V., Ferraioli, D., Pasquale, F. et al. Logit Dynamics with Concurrent Updates for Local Interaction Potential Games. Algorithmica 73, 511–546 (2015). https://doi.org/10.1007/s00453-014-9959-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9959-4

Keywords

Navigation