Skip to main content
Log in

Chromosomal organizations of major repeat families on potato (Solanum tuberosum) and further exploring in its sequenced genome

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

One of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes. We also analysed various repeat elements that are unique to potato including the moderately repetitive P5 and REP2 elements, where the REP2 is part of a larger Gypsy-type LTR retrotransposon and cover most chromosome regions, with some brighter fluorescing spots in the heterochromatin. The most abundant tandem repeat is the potato genomic repeat 1 that covers subtelomeric regions of most chromosome arms. Extensive multiple alignments of these repetitive sequences in the assembled RH89-039-16 potato BACs and the draft assembly of the DM1-3 516 R44 genome shed light on the conservation of these repeats within the potato genome. The consensus sequences thus obtained revealed the native complete transposable elements from which they were derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

BESs:

BAC end sequences

CCD:

Charge-coupled device

Cot:

(=Co × t) Co is the initial concentration of single-stranded DNA in mole per liter, and t is the reannealing time in seconds. Cot is a measure of DNA complexity

Cy 3, 3.5, 5:

Cyanide dyes

DAPI:

4′,6-Diamidino-2-phenylindole

DEAC:

Diethylaminocoumarin

DM:

DM1-3 516 R44 genotype

FISH:

Fluorescent in situ hybridization

FITC:

Fluorescein isothiocyanate

ISH:

In situ hybridization

LINEs:

Long interspersed nuclear elements

LTRs:

Long terminal repeats

NOR:

Nucleolar-organizing region

ORFs:

Open reading frames

PFGE:

Pulsed field gel electrophoresis

PGR1:

Potato genomic repeat 1: a subtelomeric tandem repeat family in potato

PGSC:

Potato genome sequencing consortium

RH:

RH89-039-16 genotype

SINEs:

Short interspersed nuclear elements

TEs:

Transposable elements

TGRI:

Tomato genomic repeat I: a subtelomeric tandem repeat family in tomato

TPE:

Telomere position effect

TR:

Telomeric repeat

TRF:

Tandem repeats finder

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anzai T, Takahashi H, Fujiwara H (2001) Elimination of active Tad elements during the sexual phase of the Neurospora crassa life cycle. Fungal Genet Biol 33:49–57

    Article  Google Scholar 

  • Baur JA, Zou Y, Shay JW, Wright WE (2001) Telomere position effect in human cells. Science 292:2075–2077

    Article  CAS  PubMed  Google Scholar 

  • Belyayev A, Raskina O, Nevo E (2001) Chromosomal distribution of reverse transcriptase containing retroelements in two Triticeae species. Chromosome Res 9:129–136

    Article  CAS  PubMed  Google Scholar 

  • Bender J (2004) Chromatin-based silencing mechanisms. Curr Opin Plant Biol 7:521–526

    Article  CAS  PubMed  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997) Comparative analy-sis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33:11–21

    Article  CAS  PubMed  Google Scholar 

  • Brown TA (2007) Genomes 3, Garland Science. Taylor & Francis Group, New York and London

    Google Scholar 

  • Chang SB, Yang TJ, Datema E, van Vugt J, Vosman B, Kuipers A, Meznikova M, Szinay D, Lankhorst RK, Jacobsen E, de Jong H (2008) FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome Res 16:919–933

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  CAS  PubMed  Google Scholar 

  • D’Agostino N, Traini A, Frusciante L, Chiusano ML (2009) SolEST database: a “one-stop shop” approach to the study of Solanaceae transcriptomes. BMC Plant Biol 9:142

    Article  PubMed Central  PubMed  Google Scholar 

  • Datema E, Mueller LA, Buels R, Giovannoni JJ, Visser RGF, Stiekema WJ, van Ham RCHJ (2008) Comparative BAC end sequence analysis of tomato and potato reveals overrepresentation of specific gene families in potato. BMC Plant Biol 8:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang J (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007

    Article  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Lapitan NLV, Tanksley SD (1988) A molecular and cytogenetic survey of major repeated DNA sequences in tomato (Lycopersicon esculentum). Mol Gen Genet 213:262–268

    Article  CAS  Google Scholar 

  • Ganal MW, Lapitan NLV, Tanksley SD (1991) Macrostructure of the tomato telomeres. Plant Cell 3:87–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gebhardt C, Eberle B, Leonards-Schippers C, Walkemeier B, Salamini F (1995) Isolation, characterization and RFLP linkage mapping of a DNA repeat family of Solanum spegazzinii by which chromosome ends can be localized on the genetic map of potato. Genet Res Camb 65:1–10

    Article  CAS  Google Scholar 

  • Gong Z, Wu Y, Koblizkova A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novak P, Buell CR, Macas J, Jiang J (2012) Repeatless and repeat-based centromeresn in potato: implications for centromere evolution. Plant Cell 24:3559–3574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762

    Article  CAS  PubMed  Google Scholar 

  • Hall IM, Shankaranarayana GD, Noma KI, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237

    Article  CAS  PubMed  Google Scholar 

  • Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodivers 5(3):277–289

    Article  Google Scholar 

  • Hermsen JGT, Taylor LM, van Breukelen EWM, Lipski A (1978) Inheritance of genetic markers from two potato dihaploids and their respective parent cultivars. Euphytica 27:681–688

    Article  Google Scholar 

  • Heslop-Harrison JS, Brandes A, Taketa S, Schmidt T, Vershinin AV, Alkhimova EG, Kamm A, Doudrick RL, Schwarzacher T, Katsiotis A, Kubis S, Kumar A, Pearce SR, Flavell AJ, Harrison GE (1997) The chromosomal distributions of Ty1-copia group rerotransposable elements in higher plants and their implications for genome evolution. Genetica 100:197–204

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Bao W, Kojima K, Kapitonov VV (2011) Repetitive elements: bioinformatic identification, classification and analysis. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0005270.pub2

  • Koukalová B, Reich J, Matyásek R, Kuhrová V, Bezdek M (1989) A BamHI family of highly repeated DNA sequences of Nicotiana tabacum. Theor Appl Genet 78:77–80

    Article  PubMed  Google Scholar 

  • Lamb JC, Meyer JM, Corcoran B, Kato A, Han F, Birchler JA (2007) Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Res 15:33–49

    Article  CAS  PubMed  Google Scholar 

  • Lapitan NLV (1992) Organization and evolution of higher plant nuclear genomes. Genome 35:171–181

    Article  CAS  Google Scholar 

  • Lapitan NLV, Ganal MW, Tanksley SD (1989) Somatic chromosome karyotype of tomato based on in situ hybridization of the TGRI satellite repeat. Genome 32:992–998

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14(1):49–61

    Article  CAS  PubMed  Google Scholar 

  • Malkamaki U, Clark MS, Rita H, Valkonen JPT, Pehu E (1996) Analyses of solanaceous species using repetitive genomic DNA sequences isolated from Solanum brevidens. Plant Sci 117:121–129

    Article  Google Scholar 

  • Mroczek RJ, Dawe RK (2003) Distribution of retroelements in centromeres and neocentromeres of maize. Genetics 165:809–819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley SD (2005) The SOL genomics network: a comparative resource for Solanaceae biology and beyond. Plant Physiol 138(3):1310–1317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163(3):1221–1225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagaki K, Shibata F, Suzuki G, Kanatani A, Ozaki S, Hironaka A, Kashihara K, Murata M (2011) Coexistence of NtCENH3 and two retrotransposons in tobacco centromeres. Chromosome Res 19(5):591–605

    Article  CAS  PubMed  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250:305–315

    CAS  PubMed  Google Scholar 

  • Pearce SR, Harrison G, Heslop-Harrison JS, Flavell AJ, Kumar A (1997) Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). Genome 40:617–625

    Article  CAS  PubMed  Google Scholar 

  • Pehu E, Thomas M, Poutala T, Karp A, Jones MGK (1990) Species-specific sequences in the genus Solanum: identification, characterization, and application to study somatic hybrids of S. brevidens and S. tuberosum. Theor Appl Genet 80:693–698

    Article  CAS  PubMed  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, Paterson AH (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pich U, Schubert I (1998) Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res 6:315–321

    Article  CAS  PubMed  Google Scholar 

  • Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–197

    Article  Google Scholar 

  • Preiszner J, Takacs I, Bilgin M, Gyorgyey J, Dudits D, Feher A (1994) Organization of a Solanum brevidens repetitive sequence related to the TGRI subtelomeric repeats of Lycopersicon esculentum. Theor Appl Genet 89:1–8

    Article  CAS  PubMed  Google Scholar 

  • Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728

    Article  CAS  PubMed  Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. Plant Mol Biol Man A6:1–10

    Google Scholar 

  • Rokka VM, Clark MS, Knudson DL, Pehu E, Lapitan NLV (1998) Cytological and molecular characterization of repetitive DNA sequences of Solanum brevidens and Solanum tuberosum. Genome 41:487–494

    Article  CAS  PubMed  Google Scholar 

  • Rouppe van der Voort JN, van Zandvoort P, van Eck HJ, Folkertsma RT, Hutten RC, Draaistra J, Gommers FJ, Jacobsen E, Helder J, Bakker J (1997) Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet 255:438–447

    Article  CAS  PubMed  Google Scholar 

  • Schweizer G, Ganal M, Ninnemann H, Hemleben V (1988) Species-specific DNA sequences for identification of somatic hybrids between Lycopersicon esculentum and Solanum acaule. Theor Appl Genet 75:679–684

    Article  CAS  Google Scholar 

  • Schweizer G, Borisjuk N, Borisjuk L, Stadler M, Stelzer T, Schilde L, Hemleben V (1993) Molecular analysis of highly repeated genome fractions in Solanum and their use as markers for the characterization of species and cultivars. Theor Appl Genet 85:801–808

    CAS  PubMed  Google Scholar 

  • Stadler M, Stelzer T, Borisjuk N, Zanke C, Schilde-Rentschler L, Hemleben V (1995) Distribution of novel and known repeated elements of Solanum and application for the identification of somatic hybrids among Solanum species. Theor Appl Genet 91:1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Stupar RM, Song J, Tek AL, Cheng Z, Dong F, Jiang J (2002) Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats. Genetics 162:1435–1444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szinay D, Bai Y, Visser R, de Jong H (2010) FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops. Cytogenet Genome Res 129:199–210

    Article  CAS  PubMed  Google Scholar 

  • Tabata S, Kaneko T, Nakamura Y, Kotani H, Kato T, Asamizu E, Miyajima N, Sasamoto S, Kimura T, Hosouchi T et al (2000) Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408(6814):823–826

    Article  CAS  PubMed  Google Scholar 

  • Tang X, de Boer JM, van Eck HJ, Bachem C, Visser RGF, de Jong H (2009) Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Res 17:899–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tek AL, Jiang J (2004) The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similar sequence. Chromosoma 113:77–83

    Article  CAS  PubMed  Google Scholar 

  • Tek AL, Song J, Macas J, Jiang J (2005) Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics 170:1231–1238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Torres GA, Gong Z, Iovene M, Hirsch CD, Buell CR, Bryan GJ, Novak P, Macas J, Jiang J (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome. G3 Genes∣Genomes∣Genetics 1:85–92

    Article  CAS  Google Scholar 

  • Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    CAS  Google Scholar 

  • Visser RGF, Hoekstra R, van der Leij FR, Pijnacker LP, Witholt B, Feenstra WJ (1988) In situ hybridization to somatic metaphase chromosomes of potato. Theor Appl Genet 76:420–424

    Article  CAS  PubMed  Google Scholar 

  • Visser RGF, Bachem CWB, de Boer JM, Bryan GJ, Chakrabati SK, Feingold S, Gromadka R, van Ham RCHJ, Huang S, Jacobs JME, Kuznetsov B, de Melo PE, Milbourne D, Orjeda G, Sagredo B, Tang X (2009) Sequencing the potato genome: outline and first results to come from the elucidation of the sequence of the world’s third most important food crop. Am J Potato Res 86:417–429

    Article  CAS  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    Article  CAS  PubMed  Google Scholar 

  • Wenke T, Dobel T, Sorensen TR, Junghans H, Weisshaar B, Schmidt T (2011) Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes. Plant Cell 23:3117–3128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  PubMed  Google Scholar 

  • Zanke C, Hemleben V (1997) A new Solanum satellite DNA containing species-specific sequences which can be used for identification of genome parts in somatic hybrids of potato. Plant Sci 126:185–191

    Article  CAS  Google Scholar 

  • Zhong XB, de Jong JH, Zabel P (1996a) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28

    Article  CAS  PubMed  Google Scholar 

  • Zhong XB, Fransz PF, van Eden JW, Zabel P, van Kammen A, de Jong JH (1996b) High resolution mapping by fluorescence in situ hybridisation to pachytene chromosomes and extended DNA fibers. Plant Mol Biol Rep 14:232–242

    Article  CAS  Google Scholar 

  • Zhong XB, Fransz PF, van Eden JW, Ramanna MS, van Kammen A, Zabel P, de Jong H (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J 13:507–517

    Article  CAS  PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu W, Ouyang S, Iovene M, O’Brien K, Vuong H, Jiang J, Buell CR (2008) Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition. BMC Genom 9:286

    Article  Google Scholar 

  • Zwick MS, Hanson RE, McKnight TD, Islam-Faridi MH, Stelly DM, Wing RA, Price HJ (1997) A rapid procedure for the isolation of Cot-1 DNA from plants. Genome 40:138–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Irma Straatman very much for technical assistance of propagation of the clones. This work was supported by grants from PGSC-NL funded by the Netherlands Technology Foundation (FES; Grant no. WGC.7795) and the Fund for Economic Structural Support (Netherlands Ministries of Economic Affairs and Agriculture).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans de Jong.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Datema, E., Guzman, M.O. et al. Chromosomal organizations of major repeat families on potato (Solanum tuberosum) and further exploring in its sequenced genome. Mol Genet Genomics 289, 1307–1319 (2014). https://doi.org/10.1007/s00438-014-0891-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0891-8

Keywords

Navigation