Skip to main content
Log in

Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A number of technologies are available to increase the abundance of DNA markers and contribute to developing high resolution genetic maps suitable for genetic analysis. The aim of this study was to expand the number of Diversity Array Technology (DArT) markers on the wheat array that can be mapped in the wheat genome, and to determine their chromosomal location with respect to simple sequence repeat (SSR) markers and their position on the cytogenetic map. A total of 749 and 512 individual DArT and SSR markers, respectively, were identified on at least one of four genetic maps derived from recombinant inbred line (RIL) or doubled haploid (DH) populations. A number of clustered DArT markers were observed in each genetic map, in which 20–34% of markers were redundant. Segregation distortion of DArT and SSR markers was also observed in each mapping population. Only 14% of markers on the Version 2.0 wheat array were assigned to chromosomal bins by deletion mapping using aneuploid lines. In this regard, methylation effects need to be considered when applying DArT marker in genetic mapping. However, deletion mapping of DArT markers provides a reference to align genetic and cytogenetic maps and estimate the coverage of DNA markers across the wheat genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adhikari TB, Wallwork H, Goodwin SB (2004) Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop Sci 44:1403–1411

    CAS  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  • Bryan GJ, Collins AJ, Stephenson P, Orry A, Smith JB, Gale MD (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94:557–563

    Article  CAS  Google Scholar 

  • Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. and comparison with a map from a wide cross. Theor Appl Genet 94:367–377

    Article  CAS  Google Scholar 

  • Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Agric Res 52:1089–1119

    Article  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  Google Scholar 

  • Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995a) Cytologically based physical maps of the group-2 chromosomes of wheat. Theor Appl Genet 91:568–573

    CAS  Google Scholar 

  • Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995b) Cytologically based physical maps of the group 3 chromosomes of wheat. Theor Appl Genet 91:780–782

    CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Liu C, Gale MD (1992) RFLP-based genetic map of the homoeologous group-3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939

    Article  CAS  Google Scholar 

  • Faris JD, Laddomada B, Gill BS (1998) Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149:319–327

    PubMed  CAS  Google Scholar 

  • Francki MG, Crasta O, Anderson JM, Sharma H, Ohm HW (1997) Structural organization of an alien Thinopyron intermedium group 7 chromosome in U.S. soft red winter wheat (Triticum aestivum L.). Genome 40:716–722

    Article  PubMed  CAS  Google Scholar 

  • Geiman TM, Robertson KD (2002) Chromatin remodeling, histone modifications, and DNA methylation—how does it all fit together? J Cell Biochem 87:117–125

    Article  PubMed  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996a) identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    PubMed  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891

    PubMed  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pollen K, Fischbeck G, Wenzl G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards K, Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Hayden M, Stephenson P, Logojan A, Khatkar D, Rogers C, Elsden J, Koebner R, Snape J, Sharp P (2006) Development and genetic mapping of sequence-tagged microsatellites (STMs) in bread wheat (Triticum aestivum L.). Theor Appl Genet 113:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Hayden M, Nguyen T, Waterman A, Chalmers K (2008a) Multiplex-ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics 9:80

    Article  PubMed  CAS  Google Scholar 

  • Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008b) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed 21:271–281

    Article  CAS  Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1, 000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391

    Article  PubMed  CAS  Google Scholar 

  • Hohmann U, Endo TR, Herrmann RG, Gill BS (1995a) Characterization of deletions in common wheat induced by an Aegilops cylindrica chromosome: detection of multiple chromosome rearrangements. Theor Appl Genet 91:611–617

    CAS  Google Scholar 

  • Hohmann U, Graner A, Endo TR, Gill BS, Herrmann RG (1995b) Comparison of wheat physical maps with barley linkage maps for group 7 chromosomes. Theor Appl Genet 91:618–626

    CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucl Acids Res 29:e25

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  CAS  Google Scholar 

  • Kota RS, Gill KS, Gill BS, Endo TR (1993) A cytogenetically based physical map of chromosome 1B in common wheat. Genome 36:548–554

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Gill BS, Faris JD (2007) Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat. Mol Genet Gen 278:187–196

    CAS  Google Scholar 

  • Landjeva S, Korzun V, Borner A (2007) Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica 156:271–296

    Article  CAS  Google Scholar 

  • Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet 76:393–397

    Article  Google Scholar 

  • Liu YG, Tsunewaki K (1991) Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794

    Article  PubMed  CAS  Google Scholar 

  • Mace E, Xia L, Jordan D, Halloran K, Parh D, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore RH, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Manninen OM (2000) Associations between anther-culture response and molecular markers on chromosomes 2H, 3H and 4H of barley (Hordeum vulgare L.). Theor Appl Genet 100:57–62

    Article  CAS  Google Scholar 

  • Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE (1996) RFLP-based linkage maps of the homoeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366

    Article  PubMed  CAS  Google Scholar 

  • Messmer MM, Keller M, Zanetti S, Keller B (1999) Genetic linkage map of a wheat × spelt cross. Theor Appl Genet 98:1163–1170

    Article  CAS  Google Scholar 

  • Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011

    Article  CAS  Google Scholar 

  • Nelson JC, Sorrells ME, Van-Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995a) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995b) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524

    PubMed  CAS  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995c) Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533

    PubMed  CAS  Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Korol AB, Fahima T, Roder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    Article  PubMed  CAS  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Roder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Rangwala SH, Richards EJ (2004) The value-added genome: building and maintaining genomic cytosine methylation landscapes. Curr Opin Genet Dev 14:686–691

    Article  PubMed  CAS  Google Scholar 

  • Roder MS, Korzun V, Gill BS, Ganal MW (1998a) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  CAS  Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998b) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  CAS  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Sherman JD, Talbert LE (2002) Vernalization-induced changes of the DNA methylation pattern in winter wheat. Genome 45:253–260

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Applied Genet 110:550–560

    Article  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape J, Perretant M, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira G, Gay G, Qi L, Gill B, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genom 4:12–25

    Article  CAS  Google Scholar 

  • Tariq M, Paszkowski J (2004) DNA and histone methylation in plants. Trends Genet 20:244–251

    Article  PubMed  CAS  Google Scholar 

  • Uphaus J, Walker E, Shankar M, Golzar H, Loughman R, Francki M, Ohm H (2007) Quantitative trait loci identified for resistance to Stagonospora glume blotch in wheat int eh USA and Australia. Crop Sci 47:1813–1822

    Article  CAS  Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for chromosome 1 in Triticeae species and their relation to chromosomes in rice and oats. Genome 38:47–59

    Google Scholar 

  • Van Os H, Stam P, Visser R, Van Eck H (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  CAS  Google Scholar 

  • Varshney RK, Sharma PC, Gupta PK, Balyan HS, Ramesh B, Roy JK, Kumar A, Sen A (1998) Low level of polymorphism detected by SSR probes in bread wheat. Plant Breed 117:182–184

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Weng Y, Tuleen NA, Hart GE (2000) Extended physical maps and a consensus physical map of the homoeologous group-6 chromosomes of wheat (Triticum aestivum L-em Thell.). Theor Appl Genet 100:519–527

    CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Nat Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Xie DX, Devos KM, Moore G, Gale MD (1993) RFLP-based genetic maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L.). Theor Appl Genet 87:70–74

    Article  CAS  Google Scholar 

  • Xiong LZ, Xu CG, Maroof MAS, Zhang QF (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Zhang MS, Yan HY, Zhao N, Lin XY, Pang JS, Xu KZ, Liu LX, Liu B (2007) Endosperm-specific hypomethylation, and meiotic inheritance and variation of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) inter-strain hybrids. Theor Appl Genet 115:195–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Natalie Parry, Tash Teakle and Danielle Cash for technical assistance. This work was supported by Grains Research Development Corporation through projects DAW089 and DAW126 of the Australian Winter Cereals Molecular Marker Program and Value Added Wheat Cooperative Centre through projects 4.3.9 and 4.5.11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Francki.

Additional information

Communicated by M. Yano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1.

Distribution of DArT and SSR markers in geneticmaps for P92201D5-2/P91193D1-10, Ajana/WAWHT2074, Cadoux/Reevesand EGA Blanco/Millewa for 21 wheat chromosomes. The deletion bin map isto the right of the genetic maps, where chromosomal breakpoints are shownas horizontal lines and colour coded regions represent individual bins. Thecoloured markers in the genetic maps align to specific regions of wheatdeletion bins as described by Sourdille et al (2004) for SSRs and DArTmarkers in this study. Markers showing no recombination in the genetic mapsare shaded grey, whereas markers identified as having significant (P<0.05)segregation distortion or multiple loci are indicated by * and †, respectively.The doubled hatched lines represent markers >50 cM apart and with LODscore <2.4. Markers in similar positions for at least 2 genetic maps areunderlined. (PPT 763 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francki, M.G., Walker, E., Crawford, A.C. et al. Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281, 181–191 (2009). https://doi.org/10.1007/s00438-008-0403-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0403-9

Keywords

Navigation