Skip to main content

Advertisement

Log in

Motor cortex excitability and connectivity in chronic stroke: a multimodal model of functional reorganization

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Cerebral ischemia triggers a cascade of cellular processes, which induce neuroprotection, inflammation, apoptosis and regeneration. At the neural network level, lesions concomitantly induce cerebral plasticity. Yet, many stroke survivors are left with a permanent motor deficit, and only little is known about the neurobiological factors that determine functional outcome after stroke. Transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI) are non-invasive approaches that allow insights into the functional (re-) organization of the cortical motor system. We here combined neuronavigated TMS, MRI and analyses of connectivity to investigate to which degree recovery of hand function depends on corticospinal tract (CST) damage and biomarkers of cerebral plasticity like cortical excitability and motor network effective connectivity. As expected, individual motor performance of 12 stroke patients with persistent motor deficits was found to depend upon the degree of CST damage but also motor cortex excitability and interhemispheric connectivity. In addition, the data revealed a strong correlation between reduced ipsilesional motor cortex excitability and reduced interhemispheric inhibition in severely impaired patients. Interindividual differences in ipsilesional motor cortex excitability were stronger related to the motor deficit than abnormal interhemispheric connectivity or CST damage. Multivariate linear regression analysis combining the three factors accounted for more than 80 % of the variance in functional impairment. The inter-relation of cortical excitability and reduced interhemispheric inhibition provides direct multi-modal evidence for the disinhibition theory of the contralesional hemisphere following stroke. Finally, our data reveal a key mechanism (i.e., the excitability-related reduction in interhemispheric inhibition) accounting for the rehabilitative potential of novel therapeutic approaches which aim at modulating cortical excitability in stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AH:

Affected hand

AMT:

Active motor threshold

ARAT:

Action research arm test

CST:

Corticospinal tract

DCM:

Dynamic causal modeling

DTI:

Diffusion tensor imaging

EMG:

Electromyography

EPI:

Echo planar imaging

FDI:

First dorsal interosseus muscle

FDR:

False discovery rate

fMRI:

Functional magnetic resonance imaging

FWE:

Family-wise error

FWHM:

Full width at half maximum

GLM:

General linear model

IHI:

Interhemispheric inhibition

JTT:

Jebsen–Taylor hand function test

M1:

Primary motor cortex

MEP:

Motor evoked potential

MNI:

Montreal Neurological Institute

MP-RAGE:

Magnetization-prepared rapid acquisition gradient echo

MRI:

Magnetic resonance imaging

mRS:

Modified Rankin Scale

MSO:

Maximum stimulator output

NIHSS:

National Institutes of Health Stroke Scale

ROI:

Region of interest

rTMS:

Repetitive transcranial magnetic stimulation

SD:

Standard deviation

SMA:

Supplementary motor area

SPM:

Statistical parametric mapping

tDCS:

Transcranial direct current stimulation

TMS:

Transcranial magnetic stimulation

UH:

Unaffected hand

V1:

Primary visual cortex

vPMC:

Ventral premotor cortex

References

  • Adeyemo BO, Simis M, Macea DD, Fregni F (2012) Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Front Psychiatry 3:88

    Article  PubMed Central  PubMed  Google Scholar 

  • Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H, Fink GR, Nowak DA (2009) Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann Neurol 66(3):298–309

    Article  PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerfull approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300

    Google Scholar 

  • Boroojerdi B, Diefenbach K, Ferbert A (1996) Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J Neurol Sci 144(1–2):160–170

    Article  CAS  PubMed  Google Scholar 

  • Boudrias MH, Goncalves CS, Penny WD, Park CH, Rossiter HE, Talelli P, Ward NS (2012) Age-related changes in causal interactions between cortical motor regions during hand grip. Neuroimage 59(4):3398–3405

    Article  PubMed Central  PubMed  Google Scholar 

  • Brott T, Adams HP Jr, Olinger CP, Marler JR, Barsan WG, Biller J, Spilker J, Holleran R, Eberle R, Hertzberg V et al (1989) Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20(7):864–870

    Article  CAS  PubMed  Google Scholar 

  • Burgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. Neuroimage 10(5):489–499

    Article  CAS  PubMed  Google Scholar 

  • Byrnes ML, Thickbroom GW, Phillips BA, Wilson SA, Mastaglia FL (1999) Physiological studies of the corticomotor projection to the hand after subcortical stroke. Clin Neurophysiol 110(3):487–498

    Article  CAS  PubMed  Google Scholar 

  • Byrnes ML, Thickbroom GW, Phillips BA, Mastaglia FL (2001) Long-term changes in motor cortical organisation after recovery from subcortical stroke. Brain Res 889(1–2):278–287

    Article  CAS  PubMed  Google Scholar 

  • Calautti C, Leroy F, Guincestre JY, Marie RM, Baron JC (2001) Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. NeuroReport 12(18):3883–3886

    Article  CAS  PubMed  Google Scholar 

  • Cardenas-Morales L, Volz LJ, Michely J, Rehme AK, Pool EM, Nettekoven C, Eickhoff SB, Fink GR, Grefkes C (2013) Network connectivity and individual responses to brain stimulation in the human motor system. Cereb Cortex. doi:10.1093/cercor/bht023

    PubMed  Google Scholar 

  • Catano A, Houa M, Caroyer JM, Ducarne H, Noel P (1996) Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. EEG Clin Neurophysiol 101(3):233–239

    CAS  Google Scholar 

  • Cheeran B, Talelli P, Mori F, Koch G, Suppa A, Edwards M, Houlden H, Bhatia K, Greenwood R, Rothwell JC (2008) A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol 586(23):5717–5725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cicinelli P, Traversa R, Bassi A, Scivoletto G, Rossini PM (1997) Interhemispheric differences of hand muscle representation in human motor cortex. Muscle Nerve 20(5):535–542

    Article  CAS  PubMed  Google Scholar 

  • Cicinelli P, Pasqualetti P, Zaccagnini M, Traversa R, Oliveri M, Rossini PM (2003) Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study. Stroke 34(11):2653–2658

    Article  PubMed  Google Scholar 

  • Classen J, Schnitzler A, Binkofski F, Werhahn KJ, Kim YS, Kessler KR, Benecke R (1997) The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic. Brain 120(4):605–619

    Article  PubMed  Google Scholar 

  • Dancause N, Nudo RJ (2011) Shaping plasticity to enhance recovery after injury. Prog Brain Res 192:273–295

    Article  PubMed Central  PubMed  Google Scholar 

  • Day BL, Dressler D, de Maertens Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 412:449–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114(2):329–338

    Article  CAS  PubMed  Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508(2):625–633

    Article  PubMed Central  PubMed  Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11(3):667–689

    CAS  PubMed  Google Scholar 

  • Eickhoff SB, Grefkes C (2011) Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clin EEG Neurosci 42(2):107–121

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335

    Article  PubMed  Google Scholar 

  • Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J (1998) Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 29(9):1854–1859

    Article  CAS  PubMed  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19(4):1273–1302

    Article  CAS  PubMed  Google Scholar 

  • Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129(3):791–808

    Article  PubMed  Google Scholar 

  • Grefkes C, Fink GR (2011) Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 134(5):1264–1276

    Article  PubMed Central  PubMed  Google Scholar 

  • Grefkes C, Fink GR (2012) Disruption of motor network connectivity post-stroke and its noninvasive neuromodulation. Curr Opin Neurol 25(6):670–675

    Article  PubMed  Google Scholar 

  • Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H, Fink GR (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63(2):236–246

    Article  PubMed  Google Scholar 

  • Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC (2013) The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23(7):1593–1605

    Article  PubMed  Google Scholar 

  • Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5(8):708–712

    Article  PubMed  Google Scholar 

  • Kandel M, Beis JM, Le Chapelain L, Guesdon H, Paysant J (2012) Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review. Ann Phys Rehabil Med 55(9–10):657–680

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, You SH, Ko MH, Park JW, Lee KH, Jang SH, Yoo WK, Hallett M (2006) Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 37(6):1471–1476

    Article  PubMed  Google Scholar 

  • Liepert J (2005) Transcranial magnetic stimulation in neurorehabilitation. Acta Neurochir Suppl 93:71–74

    Article  CAS  PubMed  Google Scholar 

  • Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C (2005) Motor strokes: the lesion location determines motor excitability changes. Stroke 36(12):2648–2653

    Article  PubMed  Google Scholar 

  • Lyle RC (1981) A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res 4:483–492

    Article  CAS  PubMed  Google Scholar 

  • Macdonell RA, Donnan GA, Bladin PF (1989) A comparison of somatosensory evoked and motor evoked potentials in stroke. Ann Neurol 25(1):68–73

    Article  CAS  PubMed  Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55(3):400–409

    Article  PubMed  Google Scholar 

  • Nardone R, Tezzon F (2002) Inhibitory and excitatory circuits of cerebral cortex after ischaemic stroke: prognostic value of the transcranial magnetic stimulation. EMG Clin Neurophysiol 42(3):131–136

    CAS  Google Scholar 

  • Nelson AJ, Hoque T, Gunraj C, Ni Z, Chen R (2009) Bi-directional interhemispheric inhibition during unimanual sustained contractions. BMC Neurosci 10:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Newton JM, Ward NS, Parker GJ, Deichmann R, Alexander DC, Friston KJ, Frackowiak RS (2006) Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain 129(7):1844–1858

    Article  PubMed Central  PubMed  Google Scholar 

  • Ngomo S, Leonard G, Moffet H, Mercier C (2012) Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability. J Neurosci Methods 205(1):65–71

    Article  PubMed  Google Scholar 

  • Nowak DA, Grefkes C, Ameli M, Fink GR (2009) Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair 23(7):641–656

    Article  PubMed  Google Scholar 

  • Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, Pascual-Leone A, Rosenow F, Rothwell JC, Ziemann U (2008) State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 1(3):151–163

    Article  PubMed  Google Scholar 

  • Pekna M, Pekny M, Nilsson M (2012) Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 43(10):2819–2828

    Article  PubMed  Google Scholar 

  • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. Neuroimage 22(3):1157–1172

    Article  CAS  PubMed  Google Scholar 

  • Pool EM, Rehme AK, Fink GR, Eickhoff SB, Grefkes C (2013) Network dynamics engaged in the modulation of motor behavior in healthy subjects. Neuroimage 82:68–76

    Article  PubMed  Google Scholar 

  • Radlinska BA, Blunk Y, Leppert IR, Minuk J, Pike GB, Thiel A (2012) Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract. J Cereb Blood Flow Metab 32(8):1515–1524

    Article  PubMed Central  PubMed  Google Scholar 

  • Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C (2011) Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 55(3):1147–1158

    Article  PubMed  Google Scholar 

  • Rehme AK, Eickhoff SB, Rottschy C, Fink GR, Grefkes C (2012) Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage 59(3):2771–2782

    Article  PubMed  Google Scholar 

  • Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W (1999) Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. EEG Clin Neurophysiol Suppl 52:97–103

    CAS  Google Scholar 

  • Sarfeld AS, Diekhoff S, Wang LE, Liuzzi G, Uludag K, Eickhoff SB, Fink GR, Grefkes C (2012) Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area. Hum Brain Mapp 33(5):1107–1123

    Article  PubMed  Google Scholar 

  • Schulz R, Park CH, Boudrias MH, Gerloff C, Hummel FC, Ward NS (2012) Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke 43(8):2248–2251

    Article  PubMed Central  PubMed  Google Scholar 

  • Shimizu T, Hosaki A, Hino T, Sato M, Komori T, Hirai S, Rossini PM (2002) Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 125(8):1896–1907

    Article  PubMed  Google Scholar 

  • Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. Neuroimage 46(4):1004–1017

    Article  PubMed Central  PubMed  Google Scholar 

  • Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130(1):170–180

    Article  PubMed  Google Scholar 

  • Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD (2012) The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 135(8):2527–2535

    Article  PubMed  Google Scholar 

  • Talelli P, Greenwood RJ, Rothwell JC (2006) Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol 117(8):1641–1659

    Article  CAS  PubMed  Google Scholar 

  • Thickbroom GW, Byrnes ML, Archer SA, Mastaglia FL (2002) Motor outcome after subcortical stroke: MEPs correlate with hand strength but not dexterity. Clin Neurophysiol 113(12):2025–2029

    Article  PubMed  Google Scholar 

  • Traversa R, Cicinelli P, Pasqualetti P, Filippi M, Rossini PM (1998) Follow-up of interhemispheric differences of motor evoked potentials from the ‘affected’ and ‘unaffected’ hemispheres in human stroke. Brain Res 803(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  • Turton A, Wroe S, Trepte N, Fraser C, Lemon RN (1996) Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. EEG Clin Neurophysiol 101(4):316–328

    CAS  Google Scholar 

  • van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J (1988) Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19(5):604–607

    Article  PubMed  Google Scholar 

  • Veerbeek JM, Kwakkel G, van Wegen EE, Ket JC, Heymans MW (2011) Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke 42(5):1482–1488

    Article  PubMed  Google Scholar 

  • von Giesen HJ, Roick H, Benecke R (1994) Inhibitory actions of motor cortex following unilateral brain lesions as studied by magnetic brain stimulation. Exp Brain Res 99(1):84–96

    Article  Google Scholar 

  • Wang LE, Fink GR, Diekhoff S, Rehme AK, Eickhoff SB, Grefkes C (2011) Noradrenergic enhancement improves motor network connectivity in stroke patients. Ann Neurol 69(2):375–388

    Article  PubMed  Google Scholar 

  • Wang LE, Tittgemeyer M, Imperati D, Diekhoff S, Ameli M, Fink GR, Grefkes C (2012) Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study. Hum Brain Mapp 33(12):2941–2956

    Article  PubMed  Google Scholar 

  • Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126(11):2476–2496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, Rothwell JC, Frackowiak RS (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129(3):809–819

    Article  PubMed Central  PubMed  Google Scholar 

  • Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C (2012) Mapping the hand, foot and face representations in the primary motor cortex—retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 66C:531–542

    Google Scholar 

  • Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(1):141–157

    Article  PubMed  Google Scholar 

  • Yozbatiran N, Der-Yeghiaian L, Cramer SC (2008) A standardized approach to performing the action research arm test. Neurorehabil Neural Repair 22(1):78–90

    Article  PubMed  Google Scholar 

  • Ziemann U (2011) Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex. Neuroscientist 17(4):368–381

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40(3):367–378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CG is supported by the German Research Foundation (DFG GR 3285/2-1). SBE acknowledges funding by the Helmholtz Initiative on Systems-Biology “The Human Brain Model” and the NIH (R01-MH074457). GRF gratefully acknowledges additional support from the Marga and Walter Boll Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Grefkes.

Additional information

L.J. Volz and A.-S. Sarfeld contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1: Alternative models used for Bayesian Model Selection. (TIFF 18911 kb)

Supplementary material 2 (TIFF 14766 kb)

429_2013_702_MOESM3_ESM.tif

Supplementary Figure 2: (A) Endogenous connectivity (B) and effective connectivity during movements of the unaffected hand estimated via DCM. Coupling parameters (in 1/s [Hertz]) indicate connection strength, which is coded in color. Positive values (green) refer to promotion of neural activity. Negative values (red) indicate inhibition of neural activity (P < 0.05, FDR corrected). IL, ipsilesional hemisphere; CL, contralesional hemisphere. (TIFF 9936 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volz, L.J., Sarfeld, AS., Diekhoff, S. et al. Motor cortex excitability and connectivity in chronic stroke: a multimodal model of functional reorganization. Brain Struct Funct 220, 1093–1107 (2015). https://doi.org/10.1007/s00429-013-0702-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0702-8

Keywords

Navigation