Skip to main content

Advertisement

Log in

In stage II/III lymph node-positive breast cancer patients less than 55 years of age, keratin 8 expression in lymph node metastases but not in the primary tumour is an indicator of better survival

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Axillary lymph node status is one of the most important prognostic variables for breast cancer (BC). To investigate and understand the clinical, histopathological and biological factors that affect prognosis in node-positive young breast cancer patients, we compared the phenotype of 100 primary tumours with their corresponding loco-regional lymph node (LN) metastases using conventional immunohistochemistry (IHC) markers currently in use for molecular classification of breast cancer. By comparing the expression of ER, PR, HER-2, Ki67, K8, K5/6 and vimentin, we found that expression of HER-2, Ki67, K8 and vimentin is frequently lost in lymph node metastases. Between the primary tumour and corresponding lymph node metastases, expression of keratins K8 and K5/6 significantly changed. Expression of K8 in lymph node metastases, but not in primary tumours, segregates patients in two sub-groups with different outcomes. Survival of patients with K8-positive LN metastases at 5 years in comparison with patients with K8-negative LN metastases was 75 vs 48 %, at 10 years 62 vs 22 % and at 20 years 53 vs 14 % (p < 0.001). K8 immunostaining of tissue from the lymph node metastasis allows defining a sub-group of lymph node-positive BC patients with a highly unfavourable outcome, for whom therapeutic options might have to be reconsidered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cavalli LR (2009) Molecular markers of breast axillary lymph node metastasis. Expert Rev Mol Diagn 9(5):441–454. doi:10.1586/erm.09.30

    Article  CAS  PubMed  Google Scholar 

  2. Hayes DF (2005) Prognostic and predictive factors revisited. Breast 14(6):493–499. doi:10.1016/j.breast.2005.08.023

    Article  PubMed  Google Scholar 

  3. Patani NR, Dwek MV, Douek M (2007) Predictors of axillary lymph node metastasis in breast cancer: a systematic review. Eur J Surg Oncol: J Eur Soc Surg Oncol Br Assoc Surg Oncol 33(4):409–419. doi:10.1016/j.ejso.2006.09.003

    Article  CAS  Google Scholar 

  4. Sheridan W, Scott T, Caroline S, Yvonne Z, Vanessa B, David V, Karen G, Stephen C (2014) Breast cancer in young women: have the prognostic implications of breast cancer subtypes changed over time? Breast Cancer Res Treat 147(3):617–629. doi:10.1007/s10549-014-3125-1

    Article  PubMed  Google Scholar 

  5. Jonjic N, Mustac E, Dekanic A, Marijic B, Gaspar B, Kolic I, Coklo M, Sasso F (2006) Predicting sentinel lymph node metastases in infiltrating breast carcinoma with vascular invasion. Int J Surg Pathol 14(4):306–311. doi:10.1177/1066896906293054

    Article  PubMed  Google Scholar 

  6. Reyal F, Rouzier R, Depont-Hazelzet B, Bollet MA, Pierga JY, Alran S, Salmon RJ, Fourchotte V, Vincent-Salomon A, Sastre-Garau X, Antoine M, Uzan S, Sigal-Zafrani B, De Rycke Y (2011) The molecular subtype classification is a determinant of sentinel node positivity in early breast carcinoma. PLoS One 6(5):e20297. doi:10.1371/journal.pone.0020297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Callejo IP, Brito JA, Bivar JW, Fernandes FJ, Faria JL, Andre MS, Costa CS, Almeida MO, Meneses e Sousa J (2005) Predictors of positive axillary lymph nodes in breast cancer patients with metastatic sentinel lymph node. Clin Trans Oncol: Off Publ Fed Span Oncol Soc Nat Cancer Inst Mex 7(1):18–22

    Article  Google Scholar 

  8. Kuukasjarvi T, Karhu R, Tanner M, Kahkonen M, Schaffer A, Nupponen N, Pennanen S, Kallioniemi A, Kallioniemi OP, Isola J (1997) Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 57(8):1597–1604

    CAS  PubMed  Google Scholar 

  9. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874. doi:10.1073/pnas.191367098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220(2):263–280. doi:10.1002/path.2648

    CAS  PubMed  Google Scholar 

  11. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol: Off J Eur Soc Med Oncol / ESMO 22(8):1736–1747. doi:10.1093/annonc/mdr304

    Article  CAS  Google Scholar 

  12. Reis-Filho JS, Pusztai L (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378(9805):1812–1823. doi:10.1016/S0140-6736(11)61539-0

    Article  CAS  PubMed  Google Scholar 

  13. Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26(15):2568–2581. doi:10.1200/JCO.2007.13.1748

    Article  PubMed  Google Scholar 

  14. Pracella D, Bonin S, Barbazza R, Sapino A, Castellano I, Sulfaro S, Stanta G (2013) Are breast cancer molecular classes predictive of survival in patients with long follow-up? Dis Markers 35(6):595–605. doi:10.1155/2013/347073

    Article  PubMed Central  PubMed  Google Scholar 

  15. Yang Y, Hao J, Liu X, Dalkin B, Nagle RB (1997) Differential expression of cytokeratin mRNA and protein in normal prostate, prostatic intraepithelial neoplasia, and invasive carcinoma. Am J Pathol 150(2):693–704

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Shao MM, Chan SK, Yu AM, Lam CC, Tsang JY, Lui PC, Law BK, Tan PH, Tse GM (2012) Keratin expression in breast cancers. Virchows Archiv : Int J Pathol 461(3):313–322. doi:10.1007/s00428-012-1289-9

    Article  CAS  Google Scholar 

  17. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31(1):11–24

    Article  CAS  PubMed  Google Scholar 

  18. Iyer SV, Dange PP, Alam H, Sawant SS, Ingle AD, Borges AM, Shirsat NV, Dalal SN, Vaidya MM (2013) Understanding the role of keratins 8 and 18 in neoplastic potential of breast cancer derived cell lines. PLoS One 8(1):e53532. doi:10.1371/journal.pone.0053532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Aitken SJ, Thomas JS, Langdon SP, Harrison DJ, Faratian D (2010) Quantitative analysis of changes in ER, PR and HER2 expression in primary breast cancer and paired nodal metastases. Ann Oncol: Off J Eur Soc Med Oncol / ESMO 21(6):1254–1261. doi:10.1093/annonc/mdp427

    Article  CAS  Google Scholar 

  20. Cabibi D, Mustacchio V, Martorana A, Tripodo C, Campione M, Calascibetta A, Sanguedolce R, Aragona F (2006) Lymph node metastases displaying lower Ki-67 immunostaining activity than the primary breast cancer. Anticancer Res 26(6B):4357–4360

    CAS  PubMed  Google Scholar 

  21. Falck AK, Ferno M, Bendahl PO, Ryden L (2010) Does analysis of biomarkers in tumor cells in lymph node metastases give additional prognostic information in primary breast cancer? World J Surg 34(7):1434–1441. doi:10.1007/s00268-010-0499-z

    Article  PubMed  Google Scholar 

  22. Falck AK, Ferno M, Bendahl PO, Ryden L (2013) St Gallen molecular subtypes in primary breast cancer and matched lymph node metastases–aspects on distribution and prognosis for patients with luminal A tumours: results from a prospective randomised trial. BMC Cancer 13:558. doi:10.1186/1471-2407-13-558

    Article  PubMed Central  PubMed  Google Scholar 

  23. Guler G, Balci S, Costinean S, Ussakli CH, Irkkan C, Suren D, Sari E, Altundag K, Ozisik Y, Jones S, Bacher J, Shapiro CL, Huebner K (2012) Stem cell-related markers in primary breast cancers and associated metastatic lesions. Modern Pathol: Off J US Can Acad Pathol, Inc 25(7):949–955. doi:10.1038/modpathol.2012.37

    Article  CAS  Google Scholar 

  24. Markiewicz A, Ahrends T, Welnicka-Jaskiewicz M, Seroczynska B, Skokowski J, Jaskiewicz J, Szade J, Biernat W, Zaczek AJ (2012) Expression of epithelial to mesenchymal transition-related markers in lymph node metastases as a surrogate for primary tumor metastatic potential in breast cancer. J Transl Med 10:226. doi:10.1186/1479-5876-10-226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Poplawski AB, Jankowski M, Erickson SW, Diaz de Stahl T, Partridge EC, Crasto C, Guo J, Gibson J, Menzel U, Bruder CE, Kaczmarczyk A, Benetkiewicz M, Andersson R, Sandgren J, Zegarska B, Bala D, Srutek E, Allison DB, Piotrowski A, Zegarski W, Dumanski JP (2010) Frequent genetic differences between matched primary and metastatic breast cancer provide an approach to identification of biomarkers for disease progression. Eur J Hum Genet : EJHG 18(5):560–568. doi:10.1038/ejhg.2009.230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ellis IO, Schnitt SJ, Sastre-Garau X, Bussolati G, Tavassoli FA, Eusebi V, Peterse JL, Mukai K, Tabar L, Jacquemier J, Cornelisse CJ, Sasco AJ, Kaaks R, Pisani P, Goldgar DE, Devilee P, Cleton-Jansen MJ, Borresen-Dale AL, van't Veer L, Sapino A (2003) Invasive breast carcinoma. In: Tavassoli FA, Devilee P (eds) World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Breast and Female Genital Organs. IARC Press, Lyon, pp 13–59

    Google Scholar 

  27. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410

    Article  CAS  PubMed  Google Scholar 

  28. Faoro V, Stanta G (2011) Rapid Protein Extraction From FFPE Tissues Samples. In: Stanta G (ed) Guidelines for Molecular Analysis in Archive Tissues. Springer-Verlag GmbH, Berlin Heidelberg, pp 249–251. doi:10.1007/978-3-642-17890-0

    Chapter  Google Scholar 

  29. Goldstein NS, Hewitt SM, Taylor CR, Yaziji H, Hicks DG (2007) Recommendations for improved standardization of immunohistochemistry. Appl Immunohistochem Mole Morphol: AIMM / Off Publ Soc Appl Immunohistochem 15(2):124–133. doi:10.1097/PAI.0b013e31804c7283

    Article  CAS  Google Scholar 

  30. Li XR, Liu M, Zhang YJ, Wang JD, Zheng YQ, Li J, Ma B, Song X (2011) Evaluation of ER, PgR, HER-2, Ki-67, cyclin D1, and nm23-H1 as predictors of pathological complete response to neoadjuvant chemotherapy for locally advanced breast cancer. Med Oncol 28(Suppl 1):S31–S38. doi:10.1007/s12032-010-9676-z

    Article  PubMed  Google Scholar 

  31. Muller BM, Kronenwett R, Hennig G, Euting H, Weber K, Bohmann K, Weichert W, Altmann G, Roth C, Winzer KJ, Kristiansen G, Petry C, Dietel M, Denkert C (2011) Quantitative determination of estrogen receptor, progesterone receptor, and HER2 mRNA in formalin-fixed paraffin-embedded tissue–a new option for predictive biomarker assessment in breast cancer. Diagn Mol Pathol 20(1):1–10. doi:10.1097/PDM.0b013e3181e3630c

    Article  PubMed  Google Scholar 

  32. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF, American Society of Clinical O, College of American P (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013. doi:10.1200/JCO.2013.50.9984

    Article  PubMed  Google Scholar 

  33. Ramieri MT, Murari R, Botti C, Pica E, Zotti G, Alo PL (2010) Detection of HER2 amplification using the SISH technique in breast, colon, prostate, lung and ovarian carcinoma. Anticancer Res 30(4):1287–1292

    CAS  PubMed  Google Scholar 

  34. Eerola H, Heinonen M, Heikkila P, Kilpivaara O, Tamminen A, Aittomaki K, Blomqvist C, Ristimaki A, Nevanlinna H (2008) Basal cytokeratins in breast tumours among BRCA1, BRCA2 and mutation-negative breast cancer families. Breast Cancer Res : BCR 10(1):R17. doi:10.1186/bcr1863

    Article  PubMed Central  PubMed  Google Scholar 

  35. Moriya T, Kasajima A, Ishida K, Kariya Y, Akahira J, Endoh M, Watanabe M, Sasano H (2006) New trends of immunohistochemistry for making differential diagnosis of breast lesions. Med Mole Morphol 39(1):8–13. doi:10.1007/s00795-006-0309-8

    Article  CAS  Google Scholar 

  36. Kusinska RU, Kordek R, Pluciennik E, Bednarek AK, Piekarski JH, Potemski P (2009) Does vimentin help to delineate the so-called 'basal type breast cancer'? J Exp Clin Cancer Res: CR 28:118. doi:10.1186/1756-9966-28-118

    Article  PubMed Central  PubMed  Google Scholar 

  37. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, Perou CM, Ellis MJ, Nielsen TO (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101(10):736–750. doi:10.1093/jnci/djp082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Dawood S, Hu R, Homes MD, Collins LC, Schnitt SJ, Connolly J, Colditz GA, Tamimi RM (2011) Defining breast cancer prognosis based on molecular phenotypes: results from a large cohort study. Breast Cancer Res Treat 126(1):185–192. doi:10.1007/s10549-010-1113-7

    Article  PubMed Central  PubMed  Google Scholar 

  39. Park S, Koo JS, Kim MS, Park HS, Lee JS, Lee JS, Kim SI, Park BW (2012) Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. Breast 21(1):50–57. doi:10.1016/j.breast.2011.07.008

    Article  PubMed  Google Scholar 

  40. Tang P, Skinner KA, Hicks DG (2009) Molecular classification of breast carcinomas by immunohistochemical analysis: are we ready? Diagn Mol Pathol 18(3):125–132. doi:10.1097/PDM.0b013e31818d107b

    Article  CAS  PubMed  Google Scholar 

  41. Ieni A, Barresi V, Caltabiano R, Cascone AM, Del Sordo R, Cabibi D, Zeppa P, Lanzafame S, Sidoni A, Franco V, Tuccari G (2014) Discordance rate of HER2 status in primary breast carcinomas versus synchronous axillary lymph node metastases: a multicenter retrospective investigation. OncoTargets Ther 7:1267–1272. doi:10.2147/OTT.S65294

    Google Scholar 

  42. Yao ZX, Lu LJ, Wang RJ, Jin LB, Liu SC, Li HY, Ren GS, Wu KN, Wang DL, Kong LQ (2014) Discordance and clinical significance of ER, PR, and HER2 status between primary breast cancer and synchronous axillary lymph node metastasis. Med Oncol 31(1):798. doi:10.1007/s12032-013-0798-y

    Article  PubMed  Google Scholar 

  43. Russnes HG, Navin N, Hicks J, Borresen-Dale AL (2011) Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest 121(10):3810–3818. doi:10.1172/JCI57088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Comen EA (2012) Tracking the seed and tending the soil: evolving concepts in metastatic breast cancer. Discov Med 14(75):97–104

    PubMed  Google Scholar 

  45. Lopez-Bonet E, Menendez JA (2010) Discordant expression of molecular markers between primary and nodal metastases: a histopathological manifestation of the 'self (stem cell)-seeding' nature of breast cancer disease? Ann Oncol: Off J Eur Soc Med Oncol / ESMO 21(4):901–902. doi:10.1093/annonc/mdp579

    Article  CAS  Google Scholar 

  46. Harigopal M, Berger AJ, Camp RL, Rimm DL, Kluger HM (2005) Automated quantitative analysis of E-cadherin expression in lymph node metastases is predictive of survival in invasive ductal breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 11(11):4083–4089. doi:10.1158/1078-0432.CCR-04-2191

    Article  CAS  Google Scholar 

  47. Cummings MC, Simpson PT, Reid LE, Jayanthan J, Skerman J, Song S, McCart Reed AE, Kutasovic JR, Morey AL, Marquart L, O'Rourke P, Lakhani SR (2013) Metastatic progression of breast cancer: insights from 50 years of autopsies. J Pathol. doi:10.1002/path.4288

    PubMed Central  Google Scholar 

  48. Park D, Karesen R, Noren T, Sauer T (2007) Ki-67 expression in primary breast carcinomas and their axillary lymph node metastases: clinical implications. Virchows Archiv : Int J Pathol 451(1):11–18. doi:10.1007/s00428-007-0435-2

    Article  CAS  Google Scholar 

  49. Inanc M, Ozkan M, Karaca H, Berk V, Bozkurt O, Duran AO, Ozaslan E, Akgun H, Tekelioglu F, Elmali F (2014) Cytokeratin 5/6, c-Met expressions, and PTEN loss prognostic indicators in triple-negative breast cancer. Med Oncol 31(1):801. doi:10.1007/s12032-013-0801-7

    Article  PubMed  Google Scholar 

  50. Joensuu K, Leidenius M, Kero M, Andersson LC, Horwitz KB, Heikkila P (2013) ER, PR, HER2, Ki-67 and CK5 in Early and Late Relapsing Breast Cancer-Reduced CK5 Expression in Metastases. Breast Cancer : Basic Clin Res 7:23–34. doi:10.4137/BCBCR.S10701

    Google Scholar 

  51. Lim E, Winer EP (2011) Adjuvant chemotherapy in luminal breast cancers. Breast 20(Suppl 3):S128–S131. doi:10.1016/S0960-9776(11)70309-5

    Article  PubMed  Google Scholar 

  52. Romiti A, Cox MC, Sarcina I, Di Rocco R, D'Antonio C, Barucca V, Marchetti P (2013) Metronomic chemotherapy for cancer treatment: a decade of clinical studies. Cancer Chemother Pharmacol. doi:10.1007/s00280-013-2125-x

    PubMed  Google Scholar 

  53. Obermajer N, Doljak B, Kos J (2009) Cytokeratin 8 ectoplasmic domain binds urokinase-type plasminogen activator to breast tumor cells and modulates their adhesion, growth and invasiveness. Mol Cancer 8:88. doi:10.1186/1476-4598-8-88

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mackinder MA, Evans CA, Chowdry J, Staton CA, Corfe BM (2012) Alteration in composition of keratin intermediate filaments in a model of breast cancer progression and the potential to reverse hallmarks of metastasis. Cancer Biomarkers: Section A Dis Markers 12(2):49–64. doi:10.3233/CBM-120293

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Valentina Melita for the language revision of the paper. This study was partially supported by the MIUR PRIN 2008, Protocol no. 2008YFRLC8 002.

Conflict of interests

None declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Stanta.

Additional information

Danae Pracella contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 204 kb)

ESM 2

(XLSX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonin, S., Pracella, D., Barbazza, R. et al. In stage II/III lymph node-positive breast cancer patients less than 55 years of age, keratin 8 expression in lymph node metastases but not in the primary tumour is an indicator of better survival. Virchows Arch 466, 571–580 (2015). https://doi.org/10.1007/s00428-015-1748-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1748-1

Keywords

Navigation