Skip to main content
Log in

Fructan:fructan 1-fructosyltransferase, a key enzyme for biosynthesis of graminan oligomers in hardened wheat

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Fructans play important roles not only as a carbon source for survival under persistent snow cover but also as agents that protect against various stresses in overwintering plants. Complex fructans having both ß-(2,1)- and ß-(2,6)-linked fructosyl units accumulate in wheat (Triticum aestivum L.) during cold hardening. We detected fructan: fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100) activity for catalyzing the formation and extension of ß-(2,1)-linked fructans in hardened wheat tissues, cloned cDNAs (wft3 and wft4) of 1-FFT, and analyzed the enzymatic properties of a wft3 recombinant protein (Wft3m) produced by yeast. Wft3m transferred ß-(2,1)-linked fructosyl units to phlein, an extension of sucrose through ß-(2,6)-linked fructosyl units, as well as to inulin, an extension of sucrose through ß-(2,1)-linked fructosyl units, but could not efficiently synthesize long inulin oligomers. Incubation of a mixture of Wft3m and another recombinant protein of wheat, sucrose:fructan 6-fructosyltransferase (6-SFT), with sucrose and 1-kestotriose produced fructans similar to those that accumulated in hardened wheat tissues. The results demonstrate that 1-FFT produces branches of ß-(2,1)-linked fructosyl units to phlein and graminan oligomers synthesized by 6-SFT and contributes to accumulation of fructans containing ß-(2,1)- and ß-(2,6)-linked fructosyl units. In combination with sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and 6-SFT, 1-FFT is necessary for fructan synthesis in hardened wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

1-SST:

Sucrose:sucrose 1fructosyltransferase

1-FFT:

Fructan:fructan 1-fructosyltransferase

6-SFT:

Sucrose:fructan 6-fructosyltransferase

6G-FFT:

Fructan:fructan 6G-fructosyltransferase

FEH:

Fructan exohydrolase

HPAEC:

High-performance anion exchange chromatography

PAD:

Pulsed amperometric detector

DP:

Degree of polymerization

Wft1:

Wheat fructosyltransferase 1

Wft3:

Wheat fructosyltransferase 3

Wft4:

Wheat fructosyltransferase 4

References

  • Bancal P, Gaudillère JP (1989) Rate of accumulation of fructan oligomers in wheat seedlings (Triticum aestivum L) during the early stages of chilling treatment. New Phytol 112:459–463

    Article  CAS  Google Scholar 

  • Bancal P, Henson CA, Gaudillère JP, Carpita NC (1991) Fructan biochemical structure and sensitivity to an exohydrolase. Carbohydr Res 217:137–151

    Article  PubMed  CAS  Google Scholar 

  • Bancal P, Carpita NC, Gaudillère JP (1992) Differences in fructan accumulated in induced and field-grown wheat plants: an elongation-trimming pathway for their synthesis. New Phytol 120:313–321

    Article  CAS  Google Scholar 

  • Bancal P, Gibeaut DM, Carpita NC (1993) Analysis methods for the determination of fructan structure and biosynthesis. In: M Suzuki, NJ Chatterton (eds) Science and technology of fructans. CRC Press, Boca Raton, pp 83–118

    Google Scholar 

  • Bonnett GD, Sims IM, Simpson RJ, Cairns AJ (1997) Structural diversity of fructan in relation to the taxonomy of the Poaceae. New Phytol 136:11–17

    Article  CAS  Google Scholar 

  • Bruehl GW, Sprague R, Fischer WR, Nagamitsu M, Nelson WL, Vogel OA (1966) Snow molds of winter wheat in Washington. Wash Agric Exp Stn Bull 677:1–21

    Google Scholar 

  • Carpita NC, Kanabus J, Housley TL (1989) Linkage structure of fructans and fructan oligomers from Triticum aestivum and Festuca arundinaceae leaves. J Plant Physiol 134:162–168

    CAS  Google Scholar 

  • Chalmers J, Johnson X, Lidgett A, Spangenberg G (2003) Isolation and characterization of a sucrose:sucrose 1-fructosyltransferase gene from perennial ryegrass (Lolium perenne). J Plant Physiol 160:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Chambert R, Petit-Glatron MF (1991) Polymerase and hydrolase activities of Bacillus subtillis levansucrase can be separately modulated by the site-directed mutagensis. J Biochem 279:35–41

    CAS  Google Scholar 

  • Duchateau N, Bortlik K, Simmen U, Wiemken A, Bancal P (1995) Sucrose:fructan 6-fructosyltransfearse, a key enzyme for diverting carbon from sucrose to fructan in barley leaves. Plant Physiol 107:1249–1255

    PubMed  CAS  Google Scholar 

  • Edelman J, Jefford TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67:517–531

    Article  CAS  Google Scholar 

  • de Halleux S, Van Cutsem P (1997) Cloning and sequencing of the 1-SST cDNA from chicory root. Plant Physiol 113:1003

    Article  PubMed  Google Scholar 

  • Hellwege EM, Gritscher D, Willmitzer L, Heyer AG (1997) Transgenic potato tubers accumulate high level of 1-kestose and nystose: Functional identification of a sucrose:sucrose 1-fructosytltransferase of artichoke (Cynara scolymus) blossom discs. Plant J 12:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Hellwege EM, Raap M, Gritscher D, Willmitzer L, Heyer AG (1998) Differences in chain length distribution of inulin from Cynara sc olymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. FEBS Lett 427:25–28

    Article  PubMed  CAS  Google Scholar 

  • Hendry GAF (1993) Evolutionary origins and natural functions of fructans - a climatological, biogeographic and mechanistic appraisal. New Phytol 123:3–14

    Article  CAS  Google Scholar 

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Hochstrasser U, Lüscher M, De Virgilio C, Boller T, Wiemken A (1998) Expression of a functional barley sucrose:fructan 6-fructosyltransferase in the methylotrophic yeast Pichia pastoris. FEBS Lett 440:356–360

    Article  PubMed  CAS  Google Scholar 

  • Iizuka M, Yamaguchi H, Ono S, Minamiura N (1993) Production and isolation of levan by use of levansucrase immobilized on the ceramic support SM-10. Biosci Biotechnol Biochem 57:322–324

    CAS  Google Scholar 

  • Jeong B-R, Housley TL (1992) Purification and characterization of wheat ß-(2,1)-fructan:fructan fructosyltransferase activity. Plant Physiol 100:199–204

    PubMed  CAS  Google Scholar 

  • Kawakami A, Yoshida M (2002) Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Biosci Biotechnol Biochem 66:2297–2305

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova T, Parvanova D, Atanassov A, Djilianov D (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163:157–164

    Article  CAS  Google Scholar 

  • Koops AJ, Jonker HH (1994) Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus ‘Colombia’: I. Fructan:fructan fructosyltransferase. J Exp Bot 45:1623–1631

    Article  CAS  Google Scholar 

  • Koops AJ, Jonker HH (1996) Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus ‘Colombia’: II Purification of sucrose:sucrose 1-fructosyl transferase and reconstitution of fructan synthesis in vitro with purified sucrose:sucrose 1-fructosyl transferase and fructan: fructan fructosyl transferase. Plant Physiol 110:1167–1175

    PubMed  CAS  Google Scholar 

  • Lidgett A, Jennings K, Johnson X, Guthridge K, Jones E, Spangenberg G (2002) Isolation and characterization of a fructosyltransferase gene from perennial ryegrass (Lolium perenne). J Plant Physiol 159:1037–1043

    Article  CAS  Google Scholar 

  • Lüscher M, Frehner M, Nösberger J (1993) Purification and some properties of fructan:fructan fructosyltransferase from dandelion (Taraxacum officinale Weber). New Phytol 123:717–724

    Article  Google Scholar 

  • Lüscher M, Erdin C, Sprenger N, Hochstrasser U, Boller T, Wiemken A (1996) Inulin synthesis by a combination of purified fructosyltransferases from tubers of Helianthus tuberosus. FEBS Lett 385:39–42

    Article  PubMed  Google Scholar 

  • Lüscher M, Hochstrasser U, Vogel G, Aeschbacher R, Galati V, Nelson CJ, Boller T, Wiemken A (2000) Cloning and functional analysis of sucrose:sucrose 1-fructosyltrasferase (1-SST) from tall fescue. Plant Physiol 124:1217–1227

    Article  PubMed  Google Scholar 

  • van der Meer I, Koops AJ, Hakkert JC, van Tunen AJ (1998) Cloning of the fructan biosynthesis pathway of Jerusalem artichoke. Plant J 15:489–500

    Article  PubMed  Google Scholar 

  • Mohammad F, Windes JM, Souza E (1997) Total non-structural carbohydrates in winter wheat populations segregating for snow mold tolerance. Crop Sci 37:108–112

    CAS  Google Scholar 

  • Nagaraj VJ, Altenbach D, Galati V, Lüscher M, Meyer AD, Boller T, Wiemken A (2004) Distinct regulation of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. New Phytol 161:725–748

    Article  Google Scholar 

  • Neuhaus JM, Sticher L, Meins F Jr, Boller T (1991) A short C-terminal sequence is necessary and sufficient for the targeting of chitinase to the plant vacuole. Proc Natl Acad Sci USA 88:10362–10366

    Article  PubMed  CAS  Google Scholar 

  • Olien CR (1984) An adaptive response of rye to freezing. Crop Sci 24:51–54

    Google Scholar 

  • Penson SP, Cairns AJ (1994) Fructan biosynthesis in excised leaves of wheat (Triticum aestivum L.): a comparison of de novo synthesis in vivo and in vitro. New Phytol 128:395–402

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    PubMed  CAS  Google Scholar 

  • Pollock CJ, Cairns AJ (1991) Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol Plant Mol Biol 42:77–101

    Article  CAS  Google Scholar 

  • Pontis HG (1989) Fructans and cold stress. J Plant Physiol 134:148–150

    CAS  Google Scholar 

  • Reddy A, Maley F (1996) Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. J Biol Chem 271:13953–13958

    Article  PubMed  CAS  Google Scholar 

  • Ritsema T, Verhaar A, Vijn I, Smeekens S (2004) Fructosyltransferase mutants specify a function for the ß-fructosidase motif of the sucrose-binding box in specifying the fructan type synthesized. Plant Mol Biol 54:853–863

    Article  PubMed  CAS  Google Scholar 

  • Shiomi N (1981) Purification and characterization of 6G-fructosyltransferase from the roots of asparagus (Asparagus officinalis L). Carbohydr Res 96:281–292

    Article  CAS  Google Scholar 

  • Shiomi N, Onodera S, Sakai H (1997) Fructooligosaccharide content and fructosyltransferase activity during growth of onion bulbs. New Phytol 136:105–113

    Article  CAS  Google Scholar 

  • Sprenger N, Bortlik K, Brandt A, Boller T, Wiemken A (1995) Purification, cloning, and functional expression of sucrose:fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. Proc Natl Acad Sci USA 92:11652–11656

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Nass HG (1988) Fructan in winter wheat, triticale, and fall rye cultivars of varying cold hardiness. Can J Bot 66:1723–1728

    CAS  Google Scholar 

  • Tibbot BK, Henson CA, Skadsen RW (1998) Expression of enzymatically active, recombinant barley ∂-glucosidase in yeast and immunological detection of ∂-glucosidase from seed tissue. Plant Mol Biol 38:379–391

    Article  PubMed  CAS  Google Scholar 

  • Tognetti JA, Salerno GL, Crespi MD, Pontis HG (1990) Sucrose and fructan metabolism of different wheat cultivars at chilling temperatures. Physiol Plant 78:554–559

    Article  CAS  Google Scholar 

  • Tymowska-Lalanne Z, Kreis M (1998) The plant invertases: physiology, biochemistry and molecular biology. Adv Bot Res 28:71–117

    Article  CAS  Google Scholar 

  • Unger C, Hardegger M, Lienhard S, Sturm A (1994) cDNA cloning of carrot (Daucus carota) soluble acid ß-fructofranosidases and comparison with the cell wall isozyme. Plant Physiol 104:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W, Van Laere A (1996) Variation in the in vitro generated fructan pattern from sucrose as a function of the purified chicory root 1-SST and 1-FFT concentrations. J Exp Bot 47:1797–1803

    Article  CAS  Google Scholar 

  • Van den Ende W, Van Wonterghem D, Verhaert P, Dewil E, Van Laere A (1996) Purification and characterization of fructan:fructan fructosyltransferase from chicory (Cichorium intybus L.) roots. Planta 199:493–502

    Article  CAS  Google Scholar 

  • Van den Ende W, Clerens S, Vergauwen R, Van Riet L, Van Laere A, Midori Y, Kawakami A (2003) Fructan 1-exohydrolase. ß-(2,1)-trimmers during graminan biosynthesis in stems of wheat ? Purification, characterization, mass mapping, and cloning of two fructan 1-exohydrolase isoforms. Plant Physiol 131:621–631

    Article  PubMed  CAS  Google Scholar 

  • Vergauwen R, Van Laere A, Van den Ende W (2003) Properties of fructan:fructan 1-fructosyltransferases from chicory and globe thistle, two asteracean plants storing greatly different types of inulin. Plant Physiol 133:391–401

    Article  PubMed  CAS  Google Scholar 

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–359

    Article  Google Scholar 

  • Vijn I, van Dijken A, Sprenger N, van Dun K, Weisbeek P, Wiemken A, Smeekens S (1997) Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6G-fructosyltransferase. Plant J 11:387–398

    Article  PubMed  CAS  Google Scholar 

  • Vijn I, van Dijken A, Lüscher M, Bos A, Smeets E, Weisbeek P, Wiemken A, Smeekens S (1998) Cloning of sucrose:sucrose 1-fructosyltransferase from onion and synthesis of structurally defined fructan molecules from sucrose. Plant Physiol 117:1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse AL, Chatterton NJ (1993) Glossary of fructan terms. In: M Suzuki, NJ Chatterton (eds) Science and technology of fructans. CRC Press, Boca Raton, pp 1–7

    Google Scholar 

  • Wei J-Z, Chatterton NJ (2001) Fructan biosynthesis and fructosyltransferase evolution: expression of the 6-SFT (sucrose:fructan 6-fructosyltransferase) gene in crested wheatgrass (Agropyron cristatum). J Plant Physiol 158:1203–1213

    Article  CAS  Google Scholar 

  • Wei J-Z, Chatterton NJ, Harrison PA, Wang RR-C, Larson SR (2002) Characterization of fructan biosynthesis in big bluegrass (Poa secunda). J Plant Physiol 159:705–715

    Article  CAS  Google Scholar 

  • Yoshida M, Abe J, Moriyama M, Kuwabara T (1998) Carbohydrate levels among winter wheat cultivars varying in freezing tolerance and snow mold resistance during autumn and winter. Physiol Plant 103:8–16

    Article  CAS  Google Scholar 

  • Yukawa T, Watanabe Y (1991) Studies on fructan accumulation in wheat (Triticum aestivum L.) I. Relationship between fructan concentration and overwintering ability from aspect on the pedigree. Jpn J Crop Sci 60:385–391

    CAS  Google Scholar 

  • Yukawa T, Kobayashi M, Watanabe Y, Yamamoto S (1995) Studies on fructan accumulation in wheat (Triticum aestivum L) IV Fructan accumulation under cold treatments and its varietal difference in relation to the activities of sucrose-sucrose fructosyltransferase and fructan exohydrolase. Jpn J Crop Sci 64:801–806

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Himi and Noda, Okayama University, Japan for providing the sequence of wheat actin cDNA, Dr. Masaru Iizuka, Osaka City University, Japan for providing 6-kestose, and Dr Wim Van den Ende, University of Leuven, Belgium for providing inulin extracted from chicory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kawakami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, A., Yoshida, M. Fructan:fructan 1-fructosyltransferase, a key enzyme for biosynthesis of graminan oligomers in hardened wheat. Planta 223, 90–104 (2005). https://doi.org/10.1007/s00425-005-0054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0054-6

Keywords

Navigation