Skip to main content
Log in

Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria—a gradual increase from C3 to C4 characteristics

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In order to elucidate the discrete steps in phosphoenolpyruvate carboxylase (PEPC) evolution concerning K m-PEP and malate tolerance a comparison was made between C3, C3–C4 and C4 species of the dicot genus Flaveria. The PEPCs of this genus are encoded by a gene family comprising three classes: ppcA, ppcB and ppcC [J. Hermans and P. Westhoff (1990) Mol Gen Genet 224:459–468, (1992) Mol Gen Genet 234:275–284]. The ppcA of F trinervia (C4) codes for the C4 PEPC isoform but other plants of the genus contain ppcA orthologues too. The C3 plant F. pringlei showed the lowest levels of ppcA PEPC mRNA followed by F. pubescens (C3–C4) while the C4-like plant F. brownii displayed RNA amounts close to the C4 species F. trinervia. In contrast to the similar expression profiles of F. brownii (C4-like) and F. trinervia (C4) the PEPC amino acid sequence of F. brownii was more similar to the C3 and C3–C4 ppcA PEPCs than to the C4 PEPC. Similarly, the C3, C3–C4 and C4-like ppcA PEPCs showed almost identical PEP saturation kinetics when activated by glucose-6-phosphate (K m-PEP: 17–20 μM) while the K m-PEP for the C4 PEPC was determined to be 53 μM. However, without activation the ppcA PEPCs of F. pubescens and F. brownii displayed C3–C4 intermediate values. A similar picture was obtained when the malate sensitivities were compared. In the non-activated state the F. trinervia (C4) enzyme was 10 times more tolerant to malate than the F. pringlei counterpart. The ppcA enzymes of F. pubescens (C3–C4) and F. brownii (C4-like) displayed intermediate values. In contrast, the inclusion of 5 mM glucose-6-phosphate in the reaction mixture changed the order totally. Interestingly, the activation rendered the C4 enzyme about 50% less tolerant to malate than the C3 PEPC. The activation had a positive effect on malate tolerance of the F. pubescens (C3–C4) PEPC while the ppcA PEPC of F. brownii (C4-like) was almost unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

Glc6P:

glucose-6-phosphate

PEP:

phosphoenolpyruvate

PEPC:

PEP carboxylase

References

  • Adachi J, Hasegawa M (1996) MOLPHY: programs for molecular phylogenetics, ver. 2.3, Institute of Statistical Mathematics, Tokyo, Japan. http://ftp.ism.ac.jp:8000/ISMLIB/MOLPHY/

  • Bakrim N, Nhiri M, Pierre JN, Vidal J (1998) Metabolite control of Sorghum C4 phosphoenolpyruvate carboxylase catalytic activity and phosphorylation state. Photosynth Res 58:153–162

    Article  CAS  Google Scholar 

  • Bassüner B, Keerberg O, Bauwe H, Pyarnik T, Keerberg H (1984) Photosynthetic CO2 metabolism in C3–C4 intermediate and C4 species of Flaveria (Asteraceae). Biochem Physiol Pflanzen 179:631–634

    Google Scholar 

  • Bauwe H (1984) Photosynthetic enzyme activities and immunofluorescence studies on the localisation of ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of C3, C4, and C3–C4 intermediate species of Flaveria (Asteraceae). Biochem Physiol Pflanzen 179:253–268

    CAS  Google Scholar 

  • Bauwe H (1986) An efficient method for the determination of K m values for HCO3 of phosphoenolpyruvate carboxylase. Planta 169:356–360

    CAS  Google Scholar 

  • Bauwe H, Chollet R (1986) Kinetic properties of phosphoenolpyruvate carboxylase from C3, C4, and C3–C4 intermediate species of Flaveria (Asteraceae). Plant Physiol 82:695–699

    CAS  Google Scholar 

  • Bläsing OE, Westhoff P, Svensson P (2000) Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J Biol Chem 275:27917–27923

    CAS  PubMed  Google Scholar 

  • Carroll SB (2000) Endless forms: the evolution of gene regulation and morphological diversity. Cell 101:577–580

    CAS  PubMed  Google Scholar 

  • Chen L, Li K, Izui K (2002) Expression of a phosphoenolpyruvate carboxylase from a thermophilic cyanobacterium, Synechococcus vulcanus (SvPEPC) in Arabidopsis and its effects on nitrogen and carbon metabolism. Plant Cell Physiol 43:159–169

    Article  CAS  PubMed  Google Scholar 

  • Cheng SH, Moore Bd, Edwards GE, Ku MSB (1988) Photosynthesis in Flaveria brownii, a C4-like species. Leaf anatomy, characteristics of CO2 exchange, compartmentation of photosynthetic enzymes, and metabolism of 14CO2. Plant Physiol 87:867–873

    CAS  Google Scholar 

  • Cheng SH, Moore Bd, Wu J, Edwards GE, Ku MSB (1989) Photosynthetic plasticity in Flaveria brownii. Growth irradiance and the expression of C4 photosynthesis. Plant Physiol 89:1129–1135

    CAS  Google Scholar 

  • Chollet R, Vidal J, O'Leary MH (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47:273–298

    CAS  Google Scholar 

  • Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Dong LY, Masuda T, Kawamura T, Hata S, Izui K (1998) Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from Zea mays: Comparison with the C4-form enzyme. Plant Cell Physiol 39:865–873

    CAS  PubMed  Google Scholar 

  • Edwards GE, Ku MSB (1987). Biochemistry of C3–C4 intermediates. In: Hatch MD, Boardman NK (eds) The biochemistry of plants, vol 10. Academic Press, New York, pp 275–325

  • Engelmann S, Blasing OE, Westhoff P, Svensson P (2002) Serine 774 and amino acids 296 to 437 comprise the major C4 determinants of the C4 phosphoenolpyruvate carboxylase of Flaveria trinervia. FEBS Lett 524:11–14

    Article  CAS  PubMed  Google Scholar 

  • Hermans J, Westhoff P (1990) Analysis of expression and evolutionary relationships of phosphoenolpyruvate carboxylase genes in Flaveria trinervia (C4) and F. pringlei (C3). Mol Gen Genet 224:459–468

    CAS  PubMed  Google Scholar 

  • Hermans J, Westhoff P (1992) Homologous genes for the C4 isoform of phosphoenolpyruvate carboxylase in a C3 and a C4 Flaveria species. Mol Gen Genet 234:275–284

    CAS  PubMed  Google Scholar 

  • Holaday AS, Black CC (1981) Comparative characterization of phosphoenolpyruvate carboxylase in C3, C4, and C3–C4 intermediate Panicum species. Plant Physiol 67:330–334

    CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High-efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    CAS  PubMed  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal x. Trends Biochem Sci 23:403–405

    CAS  PubMed  Google Scholar 

  • Jiao J, Chollet R (1991) Posttranslational regulation of phosphoenolpyruvate carboxylase in C4 and Crassulacean acid metabolism plants. Plant Physiol 95:981–985

    CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–82

    CAS  PubMed  Google Scholar 

  • Koprivova A, Melzer M, von Ballmoos P, Mandel T, Brunold C, Kopriva S (2001) Assimilatory sulfate reduction in C-3, C-3–C-4, and C-4 species of Flaveria. Plant Physiol 127:543–550

    Article  CAS  PubMed  Google Scholar 

  • Leegood RC, Walker RP (1999) Regulation of the C4 pathway. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 89–131

  • Lepiniec L, Vidal J, Chollet R, Gadal P, Crétin C (1994) Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant Sci 99:111–124

    CAS  Google Scholar 

  • Matsumura H, Terada M, Shirakata S, Inoue T, Yoshinaga T, Izui K, Kai Y (1999) Plausible phosphoenolpyruvate binding site revealed by 2.6 Å structure of Mn2+-bound phosphoenolpyruvate carboxylase from Escherichia coli. FEBS Lett 458:93–6

    CAS  PubMed  Google Scholar 

  • Matsumura H, Xie Y, Shirakata S, Inoue T, Yoshinaga T, Ueno Y, Izui K, Kai Y (2002) Crystal structure of C4 from maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases. Structure 10:1721–1730

    Article  CAS  Google Scholar 

  • McNaughton GA, Fewson CA, Wilkins MB, Nimmo HG (1989) Purification, oligomerization state and malate sensitivity of maize leaf phosphoenolpyruvate carboxylase. Biochem J 261:349–355

    CAS  PubMed  Google Scholar 

  • Monson RK, Moore B (1989) On the significance of C3–C4 intermediate photosynthesis to the evolution of C4 photosynthesis. Plant Cell Environ 12:689–699

    CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Rosche E, Westhoff P (1995) Genomic structure and expression of the pyruvate,orthophosphate dikinase gene of the dicotyledonous C4 plant Flaveria trinervia (Asteraceae). Plant Mol Biol 29:663–678

    CAS  PubMed  Google Scholar 

  • Sabe H, Miwa T, Kodaki T, Izui K, Hiraga S, Katzuki H (1984) Molecular cloning of the phosphoenolpyruvate carboxylase gene, ppc, of Escherichia coli. Gene 31:279–283

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Svensson P, Bläsing OE, Westhoff P (1997) Evolution of the enzymatic characteristics of C4 phosphoenolpyruvate carboxylase—a comparison of the orthologous PPCA phosphoenolpyruvate carboxylases of Flaveria trinervia (C4) and Flaveria pringlei (C3). Eur J Biochem 246:452–60

    CAS  PubMed  Google Scholar 

  • Svensson P, Bläsing OE, Westhoff P (2003) Evolution of C4 phosphoenolpyruvate carboxylase. Arch Biochem Biophys 414:180–188

  • Ting IP, Osmond CB (1973a) Multiple forms of plant phosphoenolpyruvate carboxylase associated with different metabolic pathways. Plant Physiol 51:448–453

    CAS  Google Scholar 

  • Ting IP, Osmond CB (1973b) Photosynthetic phosphoenolpyruvate carboxylase. Characteristics of allozymes from leaves of C3 and C4 plants. Plant Physiol 51:439–447

    CAS  Google Scholar 

  • Tovar-Mendez A, Mujica-Jimenez C, Munoz-Clares RA (2000) Physiological implications of the kinetics of maize leaf phosphoenolpyruvate carboxylase. Plant Physiol 123:149–160

    Article  CAS  PubMed  Google Scholar 

  • Westhoff P, Offermann-Steinhard K, Höfer M, Eskins K, Oswald A, Streubel M (1991) Differential accumulation of plastid transcripts encoding photosystem II components in the mesophyll and bundle-sheath cells of monocotyledonous NADP–malic enzyme-type C4 plants. Planta 184:377–388

    CAS  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    Google Scholar 

Download references

Acknowledgements

This work was supported by Graduiertenkolleg "Molekulare Physiologie" of the Deutsche Forschungsgemeinschaft (P.W.), Fonds der Chemischen Industrie (P.W.) and the Carl Trygger Foundation (P.S.). Sascha Engelmann and Oliver E. Bläsing contributed equally to the work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Svensson.

Additional information

The nucleotide sequence data of the F. brownii ppcA and F. pubescens ppcA cDNA (FBPPCA966 and FPUBPPCA966) have been deposited in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession numbers AF494191and AF494192, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelmann, S., Bläsing, O.E., Gowik, U. et al. Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria—a gradual increase from C3 to C4 characteristics. Planta 217, 717–725 (2003). https://doi.org/10.1007/s00425-003-1045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1045-0

Keywords

Navigation