Skip to main content
Log in

Effects of ageing on the fine distribution of the circadian CLOCK protein in reticular formation neurons

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Many biochemical, physiological and behavioural processes, from bacteria to human, exhibit roughly 24 h cyclic oscillations defined as circadian rhythms. However, during ageing, numerous aspects of the circadian biology undergo alterations; in particular, the sleep pattern changes, with more frequent awakenings and shorter sleep time. The basic mechanism of the circadian clock relies on intracellular molecular pathways involving interlocking transcriptional/translational feedback loops, and CLOCK protein, a transcription factor, is essential for normal circadian rhythms. In this study, the fine distribution of CLOCK protein has been analysed, in adult and old rats, at different phases of the daily cycle in the neurons of the medullary reticular formation, involved in the control of the sleep–wake cycle. The results demonstrate quali–quantitative modifications of CLOCK protein in the neurons of old animals, suggesting that such a deregulation of the intracellular clock mechanism may play some role in the degeneration of the sleep–wake circadian cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Asai M, Yoshinobu Y, Kaneko S, Mori A, Nikaido T, Moriya T, Akiyama M, Shibata S (2001) Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J Neurosci Res 66:1133–1139

    Article  PubMed  CAS  Google Scholar 

  • Aujard F, Herzog ED, Block GD (2001) Circadian rhythms in firing rate of individual suprachiasmatic nucleus neurons from adult and middle-aged mice. Neuroscience 106:255–261

    Article  PubMed  CAS  Google Scholar 

  • Bauren G, Wieslander L (1994) Splicing of Balbiani ring-1 gene pre messenger RNA occurs simultaneously with transcription. Cell 76:183–192

    Article  PubMed  CAS  Google Scholar 

  • Benedetti F, Dallaspezia S, Fulgosi MC, Lorenzi C, Serretti A, Barbini B, Colombo C, Smeraldi E (2007) Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am J Med Genet B Neuropsychiatr Genet DOI 10.1002/ajmg.b.30475

  • Bernhard W (1969) A new staining procedure for electron microscopical cytology. J Ultrastruct Res 27:250–265

    Article  PubMed  CAS  Google Scholar 

  • Biggiogera M, Malatesta M, Abolhassani-Dadras S, Amalric F, Rothblum LI, Fakan S (2001) Revealing the unseen: the organizer region of the nucleolus. J Cell Sci 114:3199–3205

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cmarko D, Verschure PJ, Rothblum LI, Hernandez-Verdun D, Amalric F, van Driel R, Fakan S (2000) Ultrastructural analysis of nucleolar transcription in cells microinjected with 5-bromo-UTP. Histochem Cell Biol 113:181–187

    Article  PubMed  CAS  Google Scholar 

  • Dawson KM, Crowne DP, Richardson CM, Anderson E (1987) Effects of age on nocturnal activity rhythms in rats. Prog Clin Biol Res 227B:107–110

    PubMed  CAS  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  PubMed  CAS  Google Scholar 

  • Fakan S (1994) Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol 4:86–90

    Article  PubMed  CAS  Google Scholar 

  • Fakan S (2004) The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem Cell Biol 122:83–93

    Article  PubMed  CAS  Google Scholar 

  • Fakan S, Leser G, Martin TE (1984) Ultrastructural distribution of nuclear ribonucleoproteins as visualized by immunocytochemistry on thin sections. J Cell Biol 98:358–363

    Article  PubMed  CAS  Google Scholar 

  • Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U (2004) The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113:103–112

    Article  PubMed  Google Scholar 

  • Goldman J, Côté L (1991) Aging of the brain: dementia of the Alzheimer’s type. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science Prentice-Hall, USA, pp 974–983

    Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Harms E, Kivimae S, Young MW, Saez L (2004) Posttranscriptional and posttranslational regulation of clock genes. J Biol Rhythms 19:361–373

    Article  PubMed  CAS  Google Scholar 

  • Holmes CJ, Jones BE (1994) Importance of cholinergic, GABAergic, serotonergic and other neurons in the medial medullary reticular formation for sleep–wake states studied by cytotoxic lesions in the cat. Neuroscience 62:1179–1200

    Article  PubMed  CAS  Google Scholar 

  • Imai S, Kitano H (1998) Heterochromatin islands and their dynamic reorganization: hypothesis for three distinctive features of cellular aging. Exp Gerontol 33:555–570

    Article  PubMed  CAS  Google Scholar 

  • Ishida N, Miyazaki K, Sakai T (2001) Circadian rhythm biochemistry: from protein degradation to sleep and mating. Biochem Biophys Res Commun 286:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kelly DD (1991) Sleep and dreaming. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science Prentice-Hall, USA, pp 792–804

    Google Scholar 

  • Kim EY, Bae K, Ng FS, Glossop NR, Hardin PE, Edery I (2002) Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity. Neuron 34:69–81

    Article  PubMed  CAS  Google Scholar 

  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TDL, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian Clock gene. Cell 89:641–653

    Article  PubMed  CAS  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York

    Google Scholar 

  • Kolker DE, Fukuyama H, Huang DS, Takahashi JS, Horton TH, Turek FW (2003) Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythms 18:159–169

    Article  PubMed  CAS  Google Scholar 

  • Kolker DE, Vitaterna MH, Fruechte EM, Takahashi JS, Turek FW (2004) Effects of age on circadian rhythms are similar in wild-type and heterozygous Clock mutant mice. Neurobiol Aging 25:517–523

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Magni F, Moruzzi G, Rossi GF, Zanchetti A (1959) EEG arousal following inactivation of the lower brain stem by selective injection of barbiturate into the vertebral circulation. Arch Ital Biol 97:33–46

    Google Scholar 

  • Malatesta M, Baldelli B, Marcheggiani F, Gazzanelli G (2003a) Immunocytochemical analysis of the circadian clock protein in mouse hepatocytes. Microsc Res Tech 61:414–418

    Article  CAS  Google Scholar 

  • Malatesta M, Baldelli B, Rossi L, Serafini S, Gazzanelli G (2003b) Fine distribution of clock protein in hepatocytes of hibernating dormice. Eur J Histochem 47:233–240

    CAS  Google Scholar 

  • Malatesta M, Bertoni-Freddari C, Fattoretti P, Caporaloni C, Fakan S, Gazzanelli G (2003c) Altered RNA structural constituents in aging and vitamin E deficiency. Mech Ageing Dev 124:175–181

    Article  CAS  Google Scholar 

  • Malatesta M, Bertoni-Freddari C, Fattoretti P, Baldelli B, Fakan S, Gazzanelli G (2004) Aging and vitamin E deficiency are responsible for altered RNA pathways. Ann N Y Acad Sci 1019:1–4

    Article  Google Scholar 

  • Malatesta M, Baldelli B, Battistelli S, Fattoretti P, Bertoni-Freddari C (2005) Aging affects the distribution of the circadian CLOCK protein in rat hepatocytes. Microsc Res Tech 68:45–50

    Article  PubMed  CAS  Google Scholar 

  • Malatesta M, Frigato E, Baldelli B, Battistelli S, Foà A, Bertolucci C (2007) Influence of temperature on the liver circadian clock in the ruin lizard Podarcis sicula.Microsc Res Tech (in press)

  • Meshorer E, Soreq H (2002) Pre-mRNA splicing modulations in senescence. Aging Cell 1:10–16

    Article  PubMed  CAS  Google Scholar 

  • Morse D, Sassone-Corsi P (2002) Time after time: inputs to and outputs from the mammalian circadian oscillators. Trends Neurosci 25:632–637

    Article  PubMed  CAS  Google Scholar 

  • Moruzzi G (1972) The sleep–waking cycle. Ergeb Physiol 64:1–165

    PubMed  CAS  Google Scholar 

  • Penev PD, Zee PC, Turek FW (1998) Quantitative analysis of age-related fragmentation of hamster 24 h activity rhythms. Am J Physiol 273:R2132-R2137

    Google Scholar 

  • Puvion E, Puvion-Dutilleul F (1996) Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin fibrils and interchromatin granules. Exp Cell Res 229:217–225

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676

    Article  PubMed  CAS  Google Scholar 

  • Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  PubMed  CAS  Google Scholar 

  • Rutter J, Reick M, McKnight SL (2002) Metabolism and the control of circadian rhythms. Annu Rev Biochem 71:307–331

    Article  PubMed  CAS  Google Scholar 

  • Satinoff E (1998) Patterns of circadian body temperature rhythms in aged rats. Clin Exp Pharmacol Physiol 25:135–140

    PubMed  CAS  Google Scholar 

  • Spector DL (1996) Nuclear organization and gene expression. Exp Cell Res 229:189–197

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Turek FW, Penev PD, Zhang Y, Van Reeth O, Zee P (1995) Effects of age on the circadian system. Neurosci Biobehav Review 19:53–58

    Article  CAS  Google Scholar 

  • Valentinuzzi VS, Scarbrough K, Takahashi JS, Turek FW (1997) Effects of aging on the circadian rhythm of weel-running activity in C57BL/6 mice. Am J Physiol 273:R1957–1964

    PubMed  CAS  Google Scholar 

  • Van Someren EJ (2000) Circadian and sleep disturbances in the elderly. Exp Gerontol 35:1229–1237

    Article  PubMed  Google Scholar 

  • Vazquez-Nin G, Echeverria O, Fakan S, Leser G, Martin TE (1990) Immunoelectron microscopic localization of snRNPs in the polytene nucleus of salivary glands of Chironomus thummi. Chromosoma 99:44–51

    Article  Google Scholar 

  • Villeponteau B (1997) The heterochromatin loss model of aging. Exp Gerontol 32:383–394

    Article  PubMed  CAS  Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behaviour. Science 264:719–725

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632

    Article  PubMed  CAS  Google Scholar 

  • Weaver DR (1998) The suprachiasmatic nucleus: a 25 year retrospective. J Biol Rhythms 13:100–112

    Article  PubMed  CAS  Google Scholar 

  • Weinert H, Weinert D, Schurov I, Maywood ES, Hastings MH (2001) Impaired expression of the mPer2 circadian clock gene in the suprachiasmatic nuclei of aging mice. Chronobiol Int 18:559–565

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M., Block GD (2002) Effects of aging on central and peripheral mammalian clocks. PNAS 99:10801–10806

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Malatesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malatesta, M., Fattoretti, P., Baldelli, B. et al. Effects of ageing on the fine distribution of the circadian CLOCK protein in reticular formation neurons. Histochem Cell Biol 127, 641–647 (2007). https://doi.org/10.1007/s00418-007-0284-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0284-8

Keywords

Navigation